power generation performance
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 57)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 28 (4) ◽  
pp. 20-29
Author(s):  
Huawu Zhang ◽  
Yihuai Hu ◽  
Jianhai He

Abstract A ship’s wind energy utilization device with multi-mode arc-shaped sails is designed, which have different working modes for sail-assisting or wind power generation according to the ship’s navigation. The structural characteristics and working principles of this device are firstly described in this paper. Three sets of arc-shaped sails with different thickness (4.5 cm, 11.3 cm, 21.7 cm) were designed. Wind tunnel experiments were carried out in the respects of sail-assisting performance and wind-power generation to determine the best sail blade shape and to verify the energy-saving effect of this device. Experiments show that the sail with the smallest thickness (4.5 cm) has a better boosting effect than others, and the sail with the largest thickness (21.7 cm) has the best wind power generation performance. Considering the lateral force and the structural strength of the support, in the case of the comprehensive evaluation for the boosting and power generation performance, it is considered that the intermediate thickness (11.3 cm) is the best choice. The device has a good comprehensive energy utilization effect and has development and application value.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6190
Author(s):  
Hyo-Seob Shin ◽  
Do-Yun Kwon ◽  
Jong-Hyeon Woo ◽  
Hoon-Ki Lee ◽  
Jang-Yong Choi

This paper presents a nonlinear magnetic equivalent circuit method and an electromagnetic characteristic analysis and verification of a wound rotor synchronous generator (WRSG). The reluctance generated by the stator, rotor, and air gap is subdivided to form a reluctance construction. A nonlinear magnetic equivalent circuit (MEC) for the WRSG is constructed and solved by an iteration method. Moreover, to calculate the inductance of the generator, the reluctance circuit of the d−qaxis is constructed, and the inductance of the generator is obtained using the initial relative permeability of the material. Using the electromagnetic parameters obtained via the MEC method, the power generation characteristics of the generator are predicted. The results of this MEC method are also verified by comparing them with the finite element analysis (FEA) results and experimental results.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6122
Author(s):  
Justin Ezekiel ◽  
Diya Kumbhat ◽  
Anozie Ebigbo ◽  
Benjamin M. Adams ◽  
Martin O. Saar

There is a potential for synergy effects in utilizing CO2 for both enhanced gas recovery (EGR) and geothermal energy extraction (CO2-plume geothermal, CPG) from natural gas reservoirs. In this study, we carried out reservoir simulations using TOUGH2 to evaluate the sensitivity of natural gas recovery, pressure buildup, and geothermal power generation performance of the combined CO2-EGR–CPG system to key reservoir and operational parameters. The reservoir parameters included horizontal permeability, permeability anisotropy, reservoir temperature, and pore-size-distribution index; while the operational parameters included wellbore diameter and ambient surface temperature. Using an example of a natural gas reservoir model, we also investigated the effects of different strategies of transitioning from the CO2-EGR stage to the CPG stage on the energy-recovery performance metrics and on the two-phase fluid-flow regime in the production well. The simulation results showed that overlapping the CO2-EGR and CPG stages, and having a relatively brief period of CO2 injection, but no production (which we called the CO2-plume establishment stage) achieved the best overall energy (natural gas and geothermal) recovery performance. Permeability anisotropy and reservoir temperature were the parameters that the natural gas recovery performance of the combined system was most sensitive to. The geothermal power generation performance was most sensitive to the reservoir temperature and the production wellbore diameter. The results of this study pave the way for future CPG-based geothermal power-generation optimization studies. For a CO2-EGR–CPG project, the results can be a guide in terms of the required accuracy of the reservoir parameters during exploration and data acquisition.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1712
Author(s):  
Chan Roh ◽  
Yoon-Jin Ha ◽  
Seungh-Ho Shin ◽  
Kyong-Hwan Kim ◽  
Ji-Yong Park

An integrated analysis is required to evaluate the performance of control algorithms used in power take-off (PTO) systems for floating wave energy converters (FWECs). However, research on PTO systems based on the existing hydraulic device has mainly focused on the input power generation performance rather than on obtaining maximum power through hydraulic device-based electrical load control. The power generation performance is analyzed based on the control variables of the existing torque control algorithm (TCA); however, the amount of power generation for each control variable changes significantly based on the cycle of wave excitation moments. This paper proposes a control algorithm to obtain the maximum power by modeling a hydraulic-device-based integrated FWEC. It also proposes a TCA that can obtain the maximum power regardless of the period of wave excitation moment. The proposed TCA continuously monitors the power generation output and changes the PTO damping coefficient in the direction in which the power generation output can be increased. The proposed TCA increased the output power generation by up to 18% compared to each PTO damping coefficient of the conventional TCA. Thus, the proposed method results in higher power generation regardless of the wave excitation moment cycle and performs better than the existing torque control algorithm.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yan Liu ◽  
Zhaochun Shi ◽  
Guohua Wang ◽  
YuYing Yan ◽  
Yingchao Zhang

In order to obtain the power generation of the thermoelectric power generator (TEG) group, a similar structure of the disc sandwich structure and an experimental system are built to analyze the power generation performance and temperature characteristics. To improve heat transfer and move heat from the hot side to the cold side, heat pipes with high thermal conductivity are arranged on the adjacent cold and hot plates of the TEG. The similar sandwich structure has 17 cold plates and 17 hot plates for the TEG pieces, which are connected in series on the circuit. Working conditions are hot air flow and cold water flow; hot air temperature and cold water temperature are set to a fixed temperature. The power generation of a single TEG is tested for verifying linear changes in the power generation performance with temperature differences (Td). Experimental results are that the power generation is improved by the air flow and water flow increasing. The water flow has a smaller effect on the power generation than the air flow. In the cold side of TEG pieces, the temperature of the cold side showed a gradual upward trend, the temperature of the hot side showed a wave trough phenomenon, and the Td showed a wave trough phenomenon. The hot air flow and the cold water changing cannot weaken the temperature trend of the hot side and the cold side. The hot air flow can more significantly increase the Td than the cold water.


Author(s):  
Justin Ezekiel ◽  
Diya Kumbhat ◽  
Anozie Ebigbo ◽  
Benjamin M. Adams ◽  
Martin O. Saar

There is a potential for synergy effects in utilizing CO2 for both enhanced gas recovery (EGR) and geothermal energy extraction (CO2-plume geothermal, CPG) from natural gas reservoirs. This “combined CO2-EGR–CPG system” has been introduced as a feasible approach that constitutes a CO2 Capture double-Utilization and Storage (CCUUS) system. In this study, we carry out reservoir simulations, using TOUGH2, to evaluate the sensitivity of the natural gas recovery, pressure buildup, and geothermal power generation performance of the combined system to various key reservoir and operational parameters. The reservoir parameters include horizontal permeability, permeability anisotropy, reservoir temperature, and pore-size-distribution index; while the operational parameters include wellbore diameter and ambient surface temperature. Using an example of a natural gas reservoir model, we also investigate the effects of different strategies of transitioning from the CO2-EGR stage to the CPG stage on the energy-recovery performance metrics and on the two-phase fluid-flow regime in the production well. The simulation results show that overlapping the CO2-EGR and CPG stages and having a relatively brief period of CO2 injection but no production (which we call the CO2-plume establishment stage) achieves the best overall energy (natural gas and geothermal) recovery performance. Permeability anisotropy and reservoir temperature are the parameters the natural gas recovery performance of the combined system is most sensitive to. The geothermal power generation performance is most sensitive to the reservoir temperature and the production wellbore diameter. The results of this study pave the way for future CPG-based geothermal power-generation optimization studies. For a CO2-EGR–CPG project, the results can be a guide regarding the required accuracy of the reservoir parameters during exploration and data acquisition.


2021 ◽  
Author(s):  
Yansheng Li ◽  
Meimei Yang ◽  
Bo Wei ◽  
Yi Zhang

Abstract The energy of mobile robots severely limits their range of motion and work capabilities. This paper proposes a method of capturing energy from the amphibious environment for a spherical robot with pendulums. The movement of pendulums is analyzed during amphibious movement, and a feasible scheme is proposed for a pendulum to capture environmental energy and convert mechanical energy into electrical energy. The mathematical model of the swing power generation is established based on the pendulum dynamic equation and voltage balance equation. The physics experiment platform and virtual experimental platform are built to analyse the power generation performance. Furthermore, the power generation mathematical models are established respectively for the spherical robot rolling on the slope and floating in the water, and the power generation performance is analyzed and summarized under different conditions. The results show that the proposed power generation method and scheme can effectively supply the energy to the spherical robot, can enhance the endurance of the movement in the amphibious environment, and provide theoretical guidance for the development of the physical prototype of the new generation of amphibious spherical robot.


2021 ◽  
Author(s):  
Zhang Jian ◽  
Yaoyao Ren ◽  
Xiangying Hou ◽  
Hong Zhang

Abstract Wave energy exploitation is getting more attention from researchers Many types of devices that can convert wave energy into electricity have been designed. At present, engineers and scientists are researching how to make a simple and efficient wave energy capture device. This paper explored the rim-driven generator. In a rim-driven wave energy generator, the rotor blade could harvest kinetic energy of wave motions. The blade is inside of the generator and the gap between the stator and the rotor is water-filled. This structure could improve the compactness and reliability of the wave energy generator. The paper studied the influence of the arrangement of the blade and the structure of the generator on the performance of the generator. Analytical models were designed to obtain generator’s performance. The result could optimize the design of generator and improve the energy conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document