Reactive Power Sharing in Islanded Microgrids Using Adaptive Voltage Droop Control

2015 ◽  
Vol 6 (6) ◽  
pp. 3052-3060 ◽  
Author(s):  
Hisham Mahmood ◽  
Dennis Michaelson ◽  
Jin Jiang
2015 ◽  
Vol 30 (6) ◽  
pp. 3133-3141 ◽  
Author(s):  
Hua Han ◽  
Yao Liu ◽  
Yao Sun ◽  
Mei Su ◽  
Josep M. Guerrero

Author(s):  
Javad Fattahi ◽  
Joan E. Haysom ◽  
John Cook ◽  
Karin Hinzer ◽  
Henry Schriemer

2020 ◽  
Vol 11 (3) ◽  
pp. 1624-1635 ◽  
Author(s):  
Dharmendra Kumar Dheer ◽  
Yusuf Gupta ◽  
Suryanarayana Doolla

Author(s):  
Mubashir Hayat Khan ◽  
Shamsul Aizam Zulkifli ◽  
Erum Pathan ◽  
Elhassan Garba ◽  
Ronald Jackson ◽  
...  

<a name="_Hlk16093850"></a><span>Droop control technique is one of the renowned techniques which does not need any communication connection between Distibuted Generations (DG), hence the cost, as well as the reliability of the microgrid (MG) system can be reduced. MG is operated in two modes as their functionality and structure is concern. These are the grid connected or islanded (stand-alone) mode. DGs operating values may have different ratings of voltage, power and line impedance. The power sharing in these operatng conditions is not shared equally by all DGs connected in the system and also during load changes conditions power sharing accuracy is difficult to achieve. In this paper, a droop power control is used to balance the power sharing in islanded mode. As from the results, the active power sharing is equally shared from all DGs connected in the microgrid system. However, reactive power sharing accuracy always disturbed when there is impedance mismatch among the different DG feeders. The accuracy is done by monitoring the effects when load changes for low load to high load or vice versa. The Proportional Integral (PI) controller has been used to minimize the reactive power errors. At the end, the power droop is capable to share power accurately and results prove the stability and reliability of the proposed technique.</span>


2019 ◽  
Vol 102 (1) ◽  
pp. 267-278 ◽  
Author(s):  
Xiying Ding ◽  
Runyu Yao ◽  
Xiaohan Zhai ◽  
Chuang Li ◽  
Henan Dong

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1158 ◽  
Author(s):  
Junjie Ma ◽  
Xudong Wang ◽  
Jinfeng Liu ◽  
Hanying Gao

In this paper, the effect of the line impedance difference between various inverters on power sharing with the traditional droop control method is fully analyzed. It reveals that the line impedance difference causes a significant reactive power error. An improved droop control method to eliminate the reactive power errors caused by the line impedance errors is proposed. In the proposed method, a voltage compensation determined by the actual reactive power error between the local inverter and the average one is added into the local voltage reference based on the CAN communication. Even when the communication is interrupted, the controller will operate with the last value of the average power, which still outperforms the traditional method. The effectiveness of the proposed control method is verified by simulation and experimental results, which show the proposed method possesses the better power sharing performance and dynamic response.


Sign in / Sign up

Export Citation Format

Share Document