An Enhanced Droop Control Strategy for Accurate Reactive Power Sharing in Islanded Microgrids

Author(s):  
Shujie Zhang ◽  
Chunmeng Chen ◽  
Ling Dong ◽  
Yongbin Li ◽  
Jianyong Zhao ◽  
...  
2015 ◽  
Vol 30 (6) ◽  
pp. 3133-3141 ◽  
Author(s):  
Hua Han ◽  
Yao Liu ◽  
Yao Sun ◽  
Mei Su ◽  
Josep M. Guerrero

2020 ◽  
Vol 11 (3) ◽  
pp. 1624-1635 ◽  
Author(s):  
Dharmendra Kumar Dheer ◽  
Yusuf Gupta ◽  
Suryanarayana Doolla

Author(s):  
Mubashir Hayat Khan ◽  
Shamsul Aizam Zulkifli ◽  
Erum Pathan ◽  
Elhassan Garba ◽  
Ronald Jackson ◽  
...  

<a name="_Hlk16093850"></a><span>Droop control technique is one of the renowned techniques which does not need any communication connection between Distibuted Generations (DG), hence the cost, as well as the reliability of the microgrid (MG) system can be reduced. MG is operated in two modes as their functionality and structure is concern. These are the grid connected or islanded (stand-alone) mode. DGs operating values may have different ratings of voltage, power and line impedance. The power sharing in these operatng conditions is not shared equally by all DGs connected in the system and also during load changes conditions power sharing accuracy is difficult to achieve. In this paper, a droop power control is used to balance the power sharing in islanded mode. As from the results, the active power sharing is equally shared from all DGs connected in the microgrid system. However, reactive power sharing accuracy always disturbed when there is impedance mismatch among the different DG feeders. The accuracy is done by monitoring the effects when load changes for low load to high load or vice versa. The Proportional Integral (PI) controller has been used to minimize the reactive power errors. At the end, the power droop is capable to share power accurately and results prove the stability and reliability of the proposed technique.</span>


2019 ◽  
Vol 102 (1) ◽  
pp. 267-278 ◽  
Author(s):  
Xiying Ding ◽  
Runyu Yao ◽  
Xiaohan Zhai ◽  
Chuang Li ◽  
Henan Dong

Author(s):  
Eder A. Molina-Viloria ◽  
John E. Candelo Becerra ◽  
Fredy E. Hoyos Velasco

The traditional droop control strategy has been applied previously in microgrids (MGs) to share accurately the active power. However, in some cases the result obtained when sharing reactive power is not the best, because of the parameters related to the distances from distributed generators (DGs) to the loads and the power variations. Therefore, this paper proposes a reactive power control strategy for a low voltage MG, where the unequal impedance related to the distances between generators and loads requires adjustments to work with the conventional frequency and voltage droop methods. Thus, an additional coefficient is calculated from parameters of the network that relate the location of elements. The test is perfomed by simulations in the MATLAB-Simulink software, considering a three-node MG with three DGs and a load that can change power at different periods of time. The results show that it is possible to improve reactive power sharing between the DGs located in the MG according to the load changes simulated and to improve voltages with this method.


Author(s):  
Sara Yahia Altahir Mohamed ◽  
Xiangwu Yan

<p>A new power sharing method of a virtual sychronous generator control based inverters is introduced in this paper. Since virtual synchronous generator has virtual inertia and damping properties, it significantly enhances the grid stability. However, its output power considerably affects by the line impedance. Thus, in this paper, the relation between the droop control and the line impedance is analyzed at first. Then, by appling an improved droop control strategy to an inverter based on the virtual sychronous generator control, achieving proportional active and reactive power sharing unaffected by the line impedance is realized. The result shows that a smooth response is achieved. As well as, the voltage drop caused by the line impedance is totally compensated. As a result, the system stability is furtherly improved. At last, the effectiveness of the proposed method is verified through MATLAB/Simulink.</p>


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1835 ◽  
Author(s):  
Qiuxia Yang ◽  
Dongmei Yuan ◽  
Xiaoqiang Guo ◽  
Bo Zhang ◽  
Cheng Zhi

Based on the concept of cyber physical system (CPS), a novel hierarchical control strategy for islanded microgrids is proposed in this paper. The control structure consists of physical and cyber layers. It’s used to improve the control effect on the output voltages and frequency by droop control of distributed energy resources (DERs), share the reactive power among DERs more reasonably and solve the problem of circumfluence in microgrids. The specific designs are as follows: to improve the control effect on voltages and frequency of DERs, an event-trigger mechanism is designed in the physical layer. When the trigger conditions in the mechanism aren’t met, only the droop control (i.e., primary control) is used in the controlled system. Otherwise, a virtual leader-following consensus control method is used in the cyber layer to accomplish the secondary control on DERs; to share the reactive power reasonably, a method of double virtual impedance is designed in the physical layer to adjust the output reactive power of DERs; to suppress circumfluence, a method combined with consensus control without leader and sliding mode control (SMC) is used in the cyber layer. Finally, the effectiveness of the proposed hierarchical control strategy is confirmed by simulation results.


Sign in / Sign up

Export Citation Format

Share Document