scholarly journals Decentralize power sharing control strategy in islanded microgridsDecentralize power sharing control strategy in islanded microgrids

Author(s):  
Mubashir Hayat Khan ◽  
Shamsul Aizam Zulkifli ◽  
Erum Pathan ◽  
Elhassan Garba ◽  
Ronald Jackson ◽  
...  

<a name="_Hlk16093850"></a><span>Droop control technique is one of the renowned techniques which does not need any communication connection between Distibuted Generations (DG), hence the cost, as well as the reliability of the microgrid (MG) system can be reduced. MG is operated in two modes as their functionality and structure is concern. These are the grid connected or islanded (stand-alone) mode. DGs operating values may have different ratings of voltage, power and line impedance. The power sharing in these operatng conditions is not shared equally by all DGs connected in the system and also during load changes conditions power sharing accuracy is difficult to achieve. In this paper, a droop power control is used to balance the power sharing in islanded mode. As from the results, the active power sharing is equally shared from all DGs connected in the microgrid system. However, reactive power sharing accuracy always disturbed when there is impedance mismatch among the different DG feeders. The accuracy is done by monitoring the effects when load changes for low load to high load or vice versa. The Proportional Integral (PI) controller has been used to minimize the reactive power errors. At the end, the power droop is capable to share power accurately and results prove the stability and reliability of the proposed technique.</span>

2015 ◽  
Vol 30 (6) ◽  
pp. 3133-3141 ◽  
Author(s):  
Hua Han ◽  
Yao Liu ◽  
Yao Sun ◽  
Mei Su ◽  
Josep M. Guerrero

2020 ◽  
Vol 11 (3) ◽  
pp. 1624-1635 ◽  
Author(s):  
Dharmendra Kumar Dheer ◽  
Yusuf Gupta ◽  
Suryanarayana Doolla

Author(s):  
Shujie Zhang ◽  
Chunmeng Chen ◽  
Ling Dong ◽  
Yongbin Li ◽  
Jianyong Zhao ◽  
...  

2019 ◽  
Vol 102 (1) ◽  
pp. 267-278 ◽  
Author(s):  
Xiying Ding ◽  
Runyu Yao ◽  
Xiaohan Zhai ◽  
Chuang Li ◽  
Henan Dong

Author(s):  
A. W. N. Husna ◽  
M. A. Roslan ◽  
M. H. Mat

This paper presents a droop control technique for equal power sharing in islanded microgrid. In this study, the proposed controller is based on the frequency droop method, is applied to a robust droop controller in parallel connected inverters. The previous robust droop controller deals with voltage droop method. A modification has been formed against this controller by adding a fuzzy logic controller with the frequency droop method. The only sharing error which is concentrated in this paper is the error in sharing the rated frequency among the inverters. By adapting fuzzy in the robust droop, it tries to eliminate the frequency error, hence that the frequency reference of the inverters keeps maintain at 50Hz. A derivation of generalized models of a single-phase parallel-connected inverter system is shown. The simulation results show that the proposed controller with FLC is able to improve the stability of frequency reference and the performance of power sharing between the inverters under the inductive line impedance.


Author(s):  
Eder A. Molina-Viloria ◽  
John E. Candelo Becerra ◽  
Fredy E. Hoyos Velasco

The traditional droop control strategy has been applied previously in microgrids (MGs) to share accurately the active power. However, in some cases the result obtained when sharing reactive power is not the best, because of the parameters related to the distances from distributed generators (DGs) to the loads and the power variations. Therefore, this paper proposes a reactive power control strategy for a low voltage MG, where the unequal impedance related to the distances between generators and loads requires adjustments to work with the conventional frequency and voltage droop methods. Thus, an additional coefficient is calculated from parameters of the network that relate the location of elements. The test is perfomed by simulations in the MATLAB-Simulink software, considering a three-node MG with three DGs and a load that can change power at different periods of time. The results show that it is possible to improve reactive power sharing between the DGs located in the MG according to the load changes simulated and to improve voltages with this method.


In day to day the demand of electrical energy has been increasing in worldwide, as well the share of solar photovoltaic power generation has increased extremely because of population growth, urbanization, etc. Although the power generated from solar photovoltaic is erratically, and it makes the stability and reliability problems in a utility grid. This paper projects a P/Q droop control strategy for a grid-tied PWM inverter. This paper introduces an entire model of grid-connected solar photovoltaic array; inverter with droop control, and loads are developed for this operation. The locus points of the both power sharing of the DG system is developed by the proposed control operation. PI controllers were used in this droop control was espoused to adjust the constraints of PI controller. The results of the proposed droop control inject positive and reactive power into a variation of loads and improving the quality of power as compared to the conventional PID controllers.


Sign in / Sign up

Export Citation Format

Share Document