scholarly journals Transportable Energy Storage for More Resilient Distribution Systems With Multiple Microgrids

2019 ◽  
Vol 10 (3) ◽  
pp. 3331-3341 ◽  
Author(s):  
Shuhan Yao ◽  
Peng Wang ◽  
Tianyang Zhao
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3783
Author(s):  
Mateusz Andrychowicz

The paper shows a method of optimizing local initiatives in the energy sector, such as energy cooperatives and energy clusters. The aim of optimization is to determine the structure of generation sources and energy storage in order to minimize energy costs. The analysis is carried out for the time horizon of one year, with an hourly increment, taking into account various RES (wind turbines (WT), photovoltaic installations (PV), and biogas power plant (BG)) and loads (residential, commercial, and industrial). Generation sources and loads are characterized by generation/demand profiles in order to take into account their variability. The optimization was carried out taking into account the technical aspects of the operation of distribution systems, such as power flows and losses, voltage levels in nodes, and power exchange with the transmission system, and economic aspects, such as capital and fixed and variable operating costs. The method was calculated by sixteen simulation scenarios using Mixed-Integer Linear Programming (MILP).


2021 ◽  
Vol 19 (02) ◽  
pp. 288-296
Author(s):  
Luiz Renato Braz Pontes ◽  
Yuri Percy Molina Rodriguez ◽  
Jaime Luyo Kuong ◽  
Hugo Rojas Espinoza

2019 ◽  
Vol 9 (2) ◽  
pp. 1-16
Author(s):  
Vannak Vai ◽  
Marie-Cécile Alvarez-Hérault ◽  
Long Bun ◽  
Bertrand Raison

This paper studies an optimal design of grid topology and integrated photovoltaic (PV) and centralized battery energy storage considering techno-economic aspect in low voltage distribution systems for urban area in Cambodia. This work aims at searching for an optimal topology including size of the battery energy storage by two different methods over the planning study of 15 years. Firstly, the shortest path algorithm (SPA) and first-fit bin-packing algorithm (FFBPA) are used to find out the topology which minimize the line and the load balancing. Secondly, mixed integer quadratically constrained programming (MIQCP) algorithms are developed to search for a topology which minimize conductor use and the load balancing improvement. Next, Genetic algorithm is developed to size the maximum PV peak power connected into LV network with respected to voltage and current constraints. Then, the size of battery energy storage procedure is established in order to eliminate the reverse power flow going on medium voltage (MV) grid and to improve the autonomous operation time of system. A discounted cost method is used to evaluate the solutions for different methods. Lastly, an urban area in Cambodia is chosen as a case study in this paper. Simulation results confirm the proposed method in this research.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 512 ◽  
Author(s):  
Nayeem Chowdhury ◽  
Fabrizio Pilo ◽  
Giuditta Pisano

Energy storage systems can improve the uncertainty and variability related to renewable energy sources such as wind and solar create in power systems. Aside from applications such as frequency regulation, time-based arbitrage, or the provision of the reserve, where the placement of storage devices is not particularly significant, distributed storage could also be used to improve congestions in the distribution networks. In such cases, the optimal placement of this distributed storage is vital for making a cost-effective investment. Furthermore, the now reached massive spread of distributed renewable energy resources in distribution systems, intrinsically uncertain and non-programmable, together with the new trends in the electric demand, often unpredictable, require a paradigm change in grid planning for properly lead with the uncertainty sources and the distribution system operators (DSO) should learn to support such change. This paper considers the DSO perspective by proposing a methodology for energy storage placement in the distribution networks in which robust optimization accommodates system uncertainty. The proposed method calls for the use of a multi-period convex AC-optimal power flow (AC-OPF), ensuring a reliable planning solution. Wind, photovoltaic (PV), and load uncertainties are modeled as symmetric and bounded variables with the flexibility to modulate the robustness of the model. A case study based on real distribution network information allows the illustration and discussion of the properties of the model. An important observation is that the method enables the system operator to integrate energy storage devices by fine-tuning the level of robustness it willing to consider, and that is incremental with the level of protection. However, the algorithm grows more complex as the system robustness increases and, thus, it requires higher computational effort.


2019 ◽  
Vol 55 (5) ◽  
pp. 5320-5330 ◽  
Author(s):  
Sheikh Jakir Hossain ◽  
Biswajit Dipan Biswas ◽  
Rojan Bhattarai ◽  
Muhammad Ahmed ◽  
Sherif Abdelrazek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document