Coordinated Regional-District Operation of Integrated Energy Systems for Resilience Enhancement in Natural Disasters

2019 ◽  
Vol 10 (5) ◽  
pp. 4881-4892 ◽  
Author(s):  
Mingyu Yan ◽  
Yubin He ◽  
Mohammad Shahidehpour ◽  
Xiaomeng Ai ◽  
Zhiyi Li ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3673
Author(s):  
Chen ◽  
Lou ◽  
Guo

The risks faced by modern energy systems are increasing, primarily caused by natural disasters. As a new form of multi-level energy complimentary utilization, integrated energy systems are attracting more and more attention for their high-efficiency and low-cost. However, due to the deep coupling relationship between systems, they are more susceptible to natural disasters, resulting in a cascading failure. To enhance the resilience of the integrated electricity-gas system, this paper proposes a failure restoration strategy after a natural disaster occurs. First, the temporal constraints of the dispatching model are considered, and the failure restoration problem is molded into a multi-period mixed-integer linear programme, aiming to recover the interrupted loads as much as possible. Second, since the uncertain output of distributed generation sources (DGs) such as wind turbines and photovoltaic systems will threat the reliability of restoration results, the robust formulation model is incorporated to cope with this problem. Third, we propose a new modeling method for radial topology constraints towards failure restoration. Moreover, the Column and Constraints Generation (C&CG) decomposition method is utilized to solve the robust model. Then, the piecewise linearization technique and the linear DistFlow equations are utilized to eliminate the nonlinear terms, providing a model that could be easily solved by an off-shelf commercial solver. The obtained results include the sequence of line/pipeline switchgear actions, the time-series dispatching results of electricity storage system, gas storage system, and the coupling devices including the gas-fired turbine, power to gas equipment. Finally, the effectiveness of the proposed restoration strategy is verified by numerical simulation on a 13-6 node integrated energy system.


Author(s):  
Thomas A. Ulrich ◽  
Roger Lew ◽  
Ronald L. Boring ◽  
Torrey Mortenson ◽  
Jooyoung Park ◽  
...  

Nuclear power plants are looking towards integrated energy systems to address the challenges faced by increasing competition from renewable energy and cheap natural gas in wholesale electricity markets. Electricity-hydrogen hybrid operations is one potential technology being explored. As part of this investigation a human factors team was integrated into the overall engineering project to develop a human system interface (HSI) for a novel system to extract steam for a coupled hydrogen production process. This paper presents the process used to perform the nuclear specific human factors engineering required to develop the HSI for this novel and unprecedented system. Furthermore, the early integration of the human factors team and the meaningful improvements to the engineering of the system itself in addition to the successful development of the HSI for this particular application are described. Lastly, the HSI developed is presented to demonstrate the culmination of the process and disseminate a potential HSI design for electricity-hydrogen hybrid operations that may be useful for others exploring similar integrated energy systems concepts.


Sign in / Sign up

Export Citation Format

Share Document