scholarly journals Comparison between different model of hexapod robot in fault-tolerant gait

Author(s):  
S.K.-K. Chu ◽  
G.K.-H. Pang
Keyword(s):  
2020 ◽  
Vol 10 (8) ◽  
pp. 2959
Author(s):  
Yiqun Liu ◽  
Xuanxia Fan ◽  
Liang Ding ◽  
Jianfeng Wang ◽  
Tao Liu ◽  
...  

In some hazardous or inaccessible applications, such as earthquake rescue, as a substitute for mankind, robots are expected to perform missions reliably. Unfortunately, the failure of components is difficult to avoid due to the complexity of robot composition and the interference of the environment. Thus, improving the reliability of robots is a crucial problem. The hexapod robot has redundant degrees of freedom due to its multiple joints, making it possible to tolerate the failure of one leg. In this paper, the Fault-Tolerant Tripod (F-TT) gait dealing with the failure of one leg is researched. The Denavit–Hartenberg (D-H) method is exploited to establish a kinematic model for the hexapod robot, the Jacobian matrix is analyzed, and it is proved that the body can be controlled when three legs are supported. Then, an F-TT gait phase sequence planning method based on a stability margin is established, and a method to improve stability is proposed. The trajectory for the center of gravity (COG) and foot is studied. Finally, a simulation model and prototype robot experiments are developed, and the effectiveness of the proposed method is verified.


Robotica ◽  
2005 ◽  
Vol 23 (6) ◽  
pp. 701-708 ◽  
Author(s):  
Jung-Min Yang

This paper presents a strategy for generating fault-tolerant gaits of hexapod walking robots. A multi-legged robot is considered to be fault-tolerant with respect to a given failure if it is capable of continuing its walking after the occurrence of a failure, maintaining its static stability. The failure concerned in this paper is a locked joint failure for which a joint in a leg cannot move and is locked in place. The kinematic condition for the existence of fault-tolerant gaits is derived for straight-line walking of a hexapod robot on even terrain. An algorithm for generating fault-tolerant gaits is described and, especially, periodic gaits are presented for forward walking of a hexapod robot with a locked joint failure. The leg sequence and the stride length formula are analytically driven based on gait study and robot kinematics. A case study on post-failure walking of a hexapod robot with the wave gait is shown to demonstrate the applicability of the proposed method.


Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 269-270 ◽  
Author(s):  
Jung-Min Yang

This paper studies crab gaits and turning gaits of a hexapod robot with a locked joint failure. Due to the reduced workspace of a failed leg, fault-tolerant gaits have limitations in their mobility. Based on the principles of fault-tolerant gait planning, periodic crab gaits and turning gaits are proposed in which a hexapod robot carries out tripod walking after a locked joint failure, having a reasonable stride length and stability margin.


Sign in / Sign up

Export Citation Format

Share Document