uneven terrain
Recently Published Documents


TOTAL DOCUMENTS

445
(FIVE YEARS 118)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 525
Author(s):  
Yasuhiro Fukuoka ◽  
Kazuyuki Oshino ◽  
Ahmad Najmuddin Ibrahim

We propose a mechanical design for a simple teleoperated unmanned ground vehicle (UGV) to negotiate uneven terrain. UGVs are typically classified into legged, legged-wheeled, wheeled, and tanked forms. Legged vehicles can significantly shift their center of gravity (COG) by positioning their multi-articulated legs at appropriate trajectories, stepping over a high obstacle. To realize a COG movable mechanism with a small number of joints, a number of UGVs have been developed that can shift their COG by moving a mass at a high position above the body. However, these tend to pose a risk of overturning, and the mass must be moved quite far to climb a high step. To address these issues, we design a novel COG shift mechanism, in which the COG can be shifted forward and backward inside the body by moving most of its internal devices. Since this movable mass includes DC motors for driving both tracks, we can extend the range of the COG movement. We demonstrate that a conventional tracked vehicle prototype can traverse a step and a gap between two steps, as well as climb stairs and a steep slope, with a human operating the vehicle movement and the movable mass position.


In the coming decades, humanoid robots will play a rising role in society. The present article discusses their walking control and obstacle avoidance on uneven terrain using enhanced spring-loaded inverted pendulum model (ESLIP). The SLIP model is enhanced by tuning it with an adaptive particle swarm optimization (APSO) approach. It helps the humanoid robot to reach closer to the obstacles in order to optimize the turning angle to optimize the path length. The desired trajectory, along with the sensory data, is provided to the SLIP model, which creates compatible COM (center of mass) dynamics for stable walking. This output is fed to APSO as input, which adjusts the placement of the foot during interaction with uneven surfaces and obstacles. It provides an optimum turning angle for shunning the obstacles and ensures the shortest path length. Simulation has been carried out in a 3D simulator based on the proposed controller and SLIP controller in uneven terrain.


2021 ◽  
Vol 12 (1) ◽  
pp. 383
Author(s):  
Yeon-Kyun Lee ◽  
Chang-Min Yang ◽  
Sol Kim ◽  
Ji-Yong Jung ◽  
Jung-Ja Kim

A walker assists elderly people with age-related reduced walking ability and helps to improve stability and balance ability. However, if the general-type walker (GTW) is used on an uneven, obstacle, or sloped terrain, it may cause excessive muscle use and falls. Therefore, in this study, we developed a caterpillar-type walker (CTW) that elderly people can safely use in various terrains. Twelve elderly who were able to walk normally participated in the study. The activity of upper and lower extremity muscles, the number of obstacles overcome, and walking speed was compared and analyzed when using two types of walkers in uneven terrain, obstacle terrain, and sloped terrain. In addition, satisfaction with the use of these walkers was evaluated. When CTW was used, the activity of the muscles of the upper and lower extremities was significantly reduced compared to the use of GTW on all terrains. The walker developed in this study overcame obstacles of all heights, but the GTW failed to overcome obstacles starting from the 2 cm section. In terms of walking speed, when the CTW was used, the walking speed was higher than that of the GTW in uneven terrain and obstacle terrain. In satisfaction, there were significant differences in safety, durability, simplicity of use, comfort, and effectiveness. Through these results, it was confirmed that the CTW can efficiently and safely assist the elderly in walking on uneven terrain, obstacle terrain, and inclined terrain.


Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Honghao Liu ◽  
Bo Li ◽  
Minjian Zhang ◽  
Chuankai Dai ◽  
Pengcheng Xi ◽  
...  

Humans and other animals can quickly respond to unexpected terrains during walking, but little is known about the cortical dynamics in this process. To study the impact of unexpected terrains on brain activity, we allowed rats with blocked vision to walk on a treadmill in a bipedal posture and then walk on an uneven area at a random position on the treadmill belt. Whole brain EEG signals and hind limb kinematics of bipedal-walking rats were recorded. After encountering unexpected terrain, the θ band power of the bilateral M1, the γ band power of the left S1, and the θ to γ band power of the RSP significantly decreased compared with normal walking. Furthermore, when the rats left uneven terrain, the β band power of the bilateral M1 and the α band power of the right M1 decreased, while the γ band power of the left M1 significantly increased compared with normal walking. Compared with the flat terrain, the θ to low β (3–20 Hz) band power of the bilateral S1 increased after the rats contacted the uneven terrain and then decreased in the single- or double- support phase. These results support the hypothesis that unexpected terrains induced changes in cortical activity.


Author(s):  
Liang Wang ◽  
Tao Lei ◽  
Jinge Si ◽  
Kang Xu ◽  
Xiuwen Wang ◽  
...  

2021 ◽  
Vol 191 ◽  
pp. 106565
Author(s):  
Md Sultan Mahmud ◽  
Azlan Zahid ◽  
Long He ◽  
Daeun Choi ◽  
Grzegorz Krawczyk ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Hongwu Zhu ◽  
Dong Wang ◽  
Nathan Boyd ◽  
Ziyi Zhou ◽  
Lecheng Ruan ◽  
...  

Dynamic quadrupedal locomotion over rough terrains reveals remarkable progress over the last few decades. Small-scale quadruped robots are adequately flexible and adaptable to traverse uneven terrains along the sagittal direction, such as slopes and stairs. To accomplish autonomous locomotion navigation in complex environments, spinning is a fundamental yet indispensable functionality for legged robots. However, spinning behaviors of quadruped robots on uneven terrain often exhibit position drifts. Motivated by this problem, this study presents an algorithmic method to enable accurate spinning motions over uneven terrain and constrain the spinning radius of the center of mass (CoM) to be bounded within a small range to minimize the drift risks. A modified spherical foot kinematics representation is proposed to improve the foot kinematic model and rolling dynamics of the quadruped during locomotion. A CoM planner is proposed to generate a stable spinning motion based on projected stability margins. Accurate motion tracking is accomplished with linear quadratic regulator (LQR) to bind the position drift during the spinning movement. Experiments are conducted on a small-scale quadruped robot and the effectiveness of the proposed method is verified on versatile terrains including flat ground, stairs, and slopes.


Sign in / Sign up

Export Citation Format

Share Document