scholarly journals Pulse wave imaging of the human carotid artery: an in vivo feasibility study

Author(s):  
Jianwen Luo ◽  
R. X. Li ◽  
E. E. Konofagou
2019 ◽  
Vol 45 (2) ◽  
pp. 353-366 ◽  
Author(s):  
Ronny X. Li ◽  
Iason Z. Apostolakis ◽  
Paul Kemper ◽  
Matthew D.J. McGarry ◽  
Ada Ip ◽  
...  

Author(s):  
Nirvedh H. Meshram ◽  
Julien Grondin ◽  
Grigorios Marios Karageorgos ◽  
Rachel Weber ◽  
Elisa E. Konofagou

2007 ◽  
Vol 29 (3) ◽  
pp. 137-154 ◽  
Author(s):  
Kana Fujikura ◽  
Jianwen Luo ◽  
Viktor Gamarnik ◽  
Mathieu Pernot ◽  
Royd Fukumoto ◽  
...  

The pulse-wave velocity (PWV) has been used as an indicator of vascular stiffness, which can be an early predictor of cardiovascular mortality. A noninvasive, easily applicable method for detecting the regional pulse wave (PW) may contribute as a future modality for risk assessment. The purpose of this study was to demonstrate the feasibility and reproducibility of PW imaging (PWI) during propagation along the abdominal aortic wall by acquiring electrocardiography-gated (ECG-gated) radiofrequency (rf) signals noninvasively. An abdominal aortic aneurysm (AAA) was induced using a CaCl2 model in order to investigate the utility of this novel method for detecting disease. The abdominal aortas of twelve normal and five CaCl2, mice were scanned at 30 MHz and electrocardiography (ECG) was acquired simultaneously. The radial wall velocities were mapped with 8000 frames/s. Propagation of the PW was demonstrated in a color-coded ciné-loop format in all cases. In the normal mice, the wave propagated in linear fashion from a proximal to a distal region. However, in CaCl2 mice, multiple waves were initiated from several regions (i.e., most likely initiated from various calcified regions within the aortic wall). The regional PWV in normal aortas was 2.70 ± 0.54 m/s ( r2 = 0.85 ± 0.06, n = 12), which was in agreement with previous reports using conventional techniques. Although there was no statistical difference in the regional PWV between the normal and CaCl2-treated aortas (2.95 ± 0.90 m/s ( r2 = 0.51 ± 0.22, n = 5)), the correlation coefficient was found to be significantly lower in the CaCl2-treated aortas ( p<0.01). This state-of-the-art technique allows noninvasive mapping of vascular disease in vivo. In future clinical applications, it may contribute to the detection of early stages of cardiovascular disease, which may decrease mortality among high-risk patients.


Author(s):  
Iason-Zacharias Apostolakis ◽  
Pierre Nauleau ◽  
Clement Papadacci ◽  
Matthew D. McGarry ◽  
Elisa E. Konofagou
Keyword(s):  

2017 ◽  
Vol 23 (3) ◽  
pp. 325-329
Author(s):  
Bu-Lang Gao ◽  
Yong-Li Wang ◽  
Xue-Jing Zhang ◽  
Qiong-Ying Fan ◽  
Wei-Li Hao ◽  
...  

Objective The aim of this study was to construct an in vivo carotid siphon model for testing neurovascular devices for endovascular interventions. Methods A model of a human carotid siphon was pre-shaped using a glass tube from a human cadaver and used to confine a segment of one side of the common carotid artery (CCA) in canines. This segment of CCA with the glass carotid siphon on was interposed end-to-end onto the contralateral CCA so as to simulate a human carotid artery siphon in vivo. Two weeks later, the siphon model was evaluated using computed tomography angiography and digital subtraction angiography, and the covered stent specially designed for intracranial vasculature was navigated through the siphon model for a longitudinal flexibility test. Results All dogs tolerated the procedures well, and the artificial siphon model in vivo provided realistic conditions for device testing. Two weeks later, the in vivo carotid siphon model remained patent with no thrombosis. Five covered stents were navigated to pass through five siphon models successfully, with vasospasm occurring in two siphons. Conclusion Construction of an in vivo siphon model in dogs with a glass tube is feasible and useful for the test of endovascular devices for treating neurovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document