A Novel Noninvasive Technique for Pulse-Wave Imaging and Characterization of Clinically-Significant Vascular Mechanical Properties In Vivo

2007 ◽  
Vol 29 (3) ◽  
pp. 137-154 ◽  
Author(s):  
Kana Fujikura ◽  
Jianwen Luo ◽  
Viktor Gamarnik ◽  
Mathieu Pernot ◽  
Royd Fukumoto ◽  
...  

The pulse-wave velocity (PWV) has been used as an indicator of vascular stiffness, which can be an early predictor of cardiovascular mortality. A noninvasive, easily applicable method for detecting the regional pulse wave (PW) may contribute as a future modality for risk assessment. The purpose of this study was to demonstrate the feasibility and reproducibility of PW imaging (PWI) during propagation along the abdominal aortic wall by acquiring electrocardiography-gated (ECG-gated) radiofrequency (rf) signals noninvasively. An abdominal aortic aneurysm (AAA) was induced using a CaCl2 model in order to investigate the utility of this novel method for detecting disease. The abdominal aortas of twelve normal and five CaCl2, mice were scanned at 30 MHz and electrocardiography (ECG) was acquired simultaneously. The radial wall velocities were mapped with 8000 frames/s. Propagation of the PW was demonstrated in a color-coded ciné-loop format in all cases. In the normal mice, the wave propagated in linear fashion from a proximal to a distal region. However, in CaCl2 mice, multiple waves were initiated from several regions (i.e., most likely initiated from various calcified regions within the aortic wall). The regional PWV in normal aortas was 2.70 ± 0.54 m/s ( r2 = 0.85 ± 0.06, n = 12), which was in agreement with previous reports using conventional techniques. Although there was no statistical difference in the regional PWV between the normal and CaCl2-treated aortas (2.95 ± 0.90 m/s ( r2 = 0.51 ± 0.22, n = 5)), the correlation coefficient was found to be significantly lower in the CaCl2-treated aortas ( p<0.01). This state-of-the-art technique allows noninvasive mapping of vascular disease in vivo. In future clinical applications, it may contribute to the detection of early stages of cardiovascular disease, which may decrease mortality among high-risk patients.

Author(s):  
Iason-Zacharias Apostolakis ◽  
Pierre Nauleau ◽  
Clement Papadacci ◽  
Matthew D. McGarry ◽  
Elisa E. Konofagou
Keyword(s):  

2020 ◽  
Vol 21 (17) ◽  
pp. 6334
Author(s):  
Rijan Gurung ◽  
Andrew Mark Choong ◽  
Chin Cheng Woo ◽  
Roger Foo ◽  
Vitaly Sorokin

Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.


2008 ◽  
Author(s):  
Jonathan Vappou

A large number of pathological conditions result in significant changes of the mechanical properties of the aortic wall. Using the Pulse Wave Velocity (PWV) as an indicator of aortic stiffness has been proposed for several decades. Pulse Wave Imaging (PWI) is an ultrasonography-based imaging method that has been developed to map and quantify the pulse wave (PW) propagation along the abdominal aortic wall and measure its local properties. We present a finite-element-based approach that aims at improving our understanding of the complex PW patterns observed by PWI and their relationship to the underlying mechanical properties. A Fluid-Structure Interaction (FSI) coupled model was developed based on an idealized axisymmetric aorta geometry. The accuracy of the model as well as its ability to reproduce realistic PW propagation were evaluated by performing a parametric analysis on aortic elasticity, by varying the aortic Young�s modulus between 20 kPa and 2000 kPa. The Finite-Element model was able to predict with good accuracy the expected PWV values in different theoretical cases, with an averaged relative difference of 14% in the 20kPa-100kPa, which corresponds to a wide physiologic range for stiffness of the healthy aorta. This study allows to validate the proposed FE model as a tool that is capable of representing quantitatively the pulse wave patterns in the aorta.


2014 ◽  
Vol 40 (10) ◽  
pp. 2404-2414 ◽  
Author(s):  
Sacha D. Nandlall ◽  
Monica P. Goldklang ◽  
Aubrey Kalashian ◽  
Nida A. Dangra ◽  
Jeanine M. D’Armiento ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document