Second-Order Spectral Statistics for the Power Gain of Wideband Wireless Channels

2014 ◽  
Vol 63 (3) ◽  
pp. 1013-1031 ◽  
Author(s):  
Milan S. Derpich ◽  
Rodolfo Feick
2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Junshan Xie

This paper considers the precise asymptotics of the spectral statistics of random matrices. Following the ideas of Gut and Spătaru (2000) and Liu and Lin (2006) on the precise asymptotics of i.i.d. random variables in the context of the complete convergence and the second-order moment convergence, respectively, we will establish the precise second-order moment convergence rates of a type of series constructed by the spectral statistics of Wigner matrices or sample covariance matrices.


Author(s):  
W. L. Bell

Disappearance voltages for second order reflections can be determined experimentally in a variety of ways. The more subjective methods, such as Kikuchi line disappearance and bend contour imaging, involve comparing a series of diffraction patterns or micrographs taken at intervals throughout the disappearance range and selecting that voltage which gives the strongest disappearance effect. The estimated accuracies of these methods are both to within 10 kV, or about 2-4%, of the true disappearance voltage, which is quite sufficient for using these voltages in further calculations. However, it is the necessity of determining this information by comparisons of exposed plates rather than while operating the microscope that detracts from the immediate usefulness of these methods if there is reason to perform experiments at an unknown disappearance voltage.The convergent beam technique for determining the disappearance voltage has been found to be a highly objective method when it is applicable, i.e. when reasonable crystal perfection exists and an area of uniform thickness can be found. The criterion for determining this voltage is that the central maximum disappear from the rocking curve for the second order spot.


Sign in / Sign up

Export Citation Format

Share Document