Outage Probability and Ergodic Capacity of Distributed Transmit Beamforming with Imperfect CSI

Author(s):  
Ishtiaq Ahmad ◽  
Chang Sung ◽  
Dmitry Kramarev ◽  
Gottfried Lechner ◽  
Hajime Hajime Suzuki ◽  
...  
2021 ◽  
Author(s):  
Nhat-Tien Nguyen ◽  
Hong-Nhu Nguyen ◽  
Anh-Tu Le ◽  
Nhan Duc Nguyen ◽  
Dinh-Thuan Do ◽  
...  

Abstract The evolution of non-orthogonal multiple access (NOMA) has raised many opportunities for massive connectivity with less latency in signal transmissions at great distances. Power-Domain NOMA transmits user signals superimposed in the same resource block by varying the power coefficient of each user according to their channel state information (CSI). At the receiver’s end, successive interference cancellation (SIC) is performed to extract the desired signal from the superimposed signal. Imperfect CSI should therefore be studied in this context. Satellite-terrestrial networks and relay networks have already gained significance in the field of communications through their efficient data transmission techniques. We aimed to integrate NOMA with a satellite communications network under both imperfect CSI and co-channel interference (CCI) from nearby systems with respect to analysis of ground user performance. In our considered system, two users perform downlink communications under Power-Domain NOMA. We analyzed the performance of this system with two modes of shadowing effect: Heavy Shadowing (HS) and Average Shadowing (AS). Performance was analyzed in terms of the outage probability and ergodic capacity of the system. We derived closed-form expressions and performed a numerical analysis. We discovered that the performance of two destinations depends on the strength of the transmit power at the satellite. However, floor outage occurs because the system depends on other parameters, such as satellite link modes, noise levels, and the number of interference sources. More specifically, if, for example, the number of interference sources is 5, the outage performance of the system experiences a decrease of approximately 40% at a signal to noise ratio (SNR) of 30 dB at the satellite. Outage probability and ergodic capacity became saturated at SNRs of 50 dB and 45 dB, respectively. To verify the authenticity of the derived closed-form expressions, we also performed Monte-Carlo simulations.


2018 ◽  
Vol 17 (12) ◽  
pp. 8239-8255 ◽  
Author(s):  
Jingjing Cui ◽  
Zhiguo Ding ◽  
Pingzhi Fan

2020 ◽  
Author(s):  
Emna Zedini ◽  
Abla Kammoun ◽  
Mohamed-Slim Alouini

Due to recent advances in laser satellite communications technology, free-space optical (FSO) links are presented as an ideal alternative to the conventional radio frequency (RF) feeder links of the geostationary satellite for next generation very high throughput satellite (VHTS) systems. In this paper, we investigate the performance of multibeam VHTS systems that account for nonlinear high power amplifiers at the transparent fixed gain satellite transponder. Specifically, we consider the forward link of such systems, where the RF user link is assumed to follow the shadowed Rician model and the FSO feeder link is modeled by the Gamma-Gamma distribution in the presence of beam wander and pointing errors where it operates under either the intensity modulation with direct detection or the heterodyne detection. Moreover, zero-forcing precoder is employed to mitigate the effect of inter-beam interference caused by the aggressive frequency reuse in the user link. The performance of the system under study is evaluated in terms of the outage probability, the average bit-error rate (BER), and the ergodic capacity that are derived in exact closed-forms in terms of the bivariate Meijer's G function. Simple asymptotic results for the outage probability and the average BER are also obtained at high signal-to-noise ratio.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 117921-117931 ◽  
Author(s):  
Xuesong Liang ◽  
Yongpeng Wu ◽  
Derrick Wing Kwan Ng ◽  
Shi Jin ◽  
Yingbiao Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document