A New Fault Tolerant Routing Algorithm for Advance Irregular Augmented Shuffle Exchange Network

Author(s):  
Ved Prakash Bhardwaj ◽  
Nitin
Author(s):  
Shilpa Gupta ◽  
G. L. Pahuja

Multistage interconnection networks (MIN) are becoming attractive choice as they provide fast and efficient communication at reasonable cost, for multiprocessing systems. Shuffle exchange network (SEN) are specific class of MIN characterized as lowest cost unipath MIN. Several developments have made SEN MIN fault tolerant with redundant paths by increasing the number or size of switching elements (SE). However, recently [Formula: see text] has been advanced by reducing the number of stages, but has serious limitation namely: (i) partial connectivity of each source–destination pair, (ii) unique path. A new method has been proposed in this paper to develop a new topology of MIN with one stage less than the basic unipath MIN of same class with multiple and disjoint path facility that mitigates the shortcomings of the above network and is truly [Formula: see text] MIN. Due to less number of stages used in the proposed network communication delays are also reduced as the path length is reduced. Parametric performances such as Terminal, Broadcast and Network Reliabilities, MTTF, Bandwidth have been computed for different network sizes and demonstrated that it not only outperforms other SEN variants, but has improved features of fault tolerance all because of disjoint minimal path set. Further the comments generated previously in literature about better reliability performance of [Formula: see text] than other two networks [Formula: see text] have been refuted and have demonstrated that [Formula: see text]2 network has better performance than other two for larger network size. Also it can be concluded that the performance of proposed [Formula: see text] is best among all these networks.


1997 ◽  
Vol 08 (03) ◽  
pp. 253-267
Author(s):  
Young Wook Keum ◽  
Hwakyung Rim

A new MIN called the Symmetric Banyan Network (SBM) is presented in this paper. In the SBN, 4 × 4 switching elements are used and they are connected symmetrically between the upper and lower parts of the network. There are 2N paths for every source-destination pair. The SBN is basically single-fault tolerant, but can tolerate up to three faults, with more elegant routing, except in the first and last stages which are still single-fault tolerant. And full accessibility is preserved even in some instances when half of the network is in fault. The routing of the SBN is self-adaptive in the presence of a fault. The throughput analysis of the SBN is done using computer simulations and shows that the SBN performs better than the Itoh's network, the ASEN (Augmented Shuffle Exchange Network) and the crossbar network. We analyze the cost/performance of the SBN against the MINs with multiple banyan networks such as MBSF (Multi Banyan Switching Fabric) and the PBSF (Piled Banyan Switching Fabric) and the analysis shows that the SBN is also attractive in terms of the cost.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750005 ◽  
Author(s):  
GAURAV KHANNA ◽  
RAJESH MISHRA ◽  
S. K. CHATURVEDI

Advancement in technology has resulted in increased computing power with the use of multiple processors within a system. These multiple processors need to communicate with each other and with memory modules. Multistage Interconnection Networks (MINs) provide a communication medium in such multi-processor systems by interconnecting a number of processors and memory modules. Besides, MINs also provide a cost effective substitute to costly crossbars in parallel computers and switching systems in telephone industry. This paper introduces two new fault-tolerant MINs named as Shuffle Exchange Gamma Interconnection Networks (SEGIN-1 and SEGIN-2). SEGIN-1 and SEGIN-2 can be obtained by altering Shuffle Exchange Network with one extra stage (SEN+) and provide two disjoint paths similar to it. Performance of SEGIN-1 and SEGIN-2 has been evaluated in terms of alternative paths, disjoint paths, reliability and hardware cost, and is compared with some very famous MINs like Shuffle Exchange Network (SEN), Shuffle Exchange Network with one extra stage (SEN+), Shuffle Exchange Network with two extra stage (SEN+2), Extra Stage Cube (ESC) and Gamma Interconnection Network (GIN). Results suggest that SEGINs surpass all the compared networks; hence, the proposed designs seem to be suitable for implementing practical interconnection networks.


2009 ◽  
Vol 01 (02) ◽  
pp. 267-281 ◽  
Author(s):  
JAMES K. LAN ◽  
WELL Y. CHOU ◽  
CHIUYUAN CHEN

The shuffle-exchange network has been proposed as a popular architecture for multistage interconnection networks. In 1991, Padmanabhan introduced the generalized shuffle-exchange network (GSEN) and proposed an efficient routing algorithm. Later, Chen et al. further enhanced the GSEN with bidirectional links and proposed the bidirectional GSEN (BGSEN). A BGSEN consists of the forward and the backward network. Based on the idea of inversely using the control tag generated by Padmanabhan's algorithm, Chen et al. proposed a routing algorithm for the backward network. Recently, Chen and Lou also proposed a routing algorithm for the backward network. It should be noted, however, that Padmanabhan's algorithm is actually an explicit formula for computing the control tag for routing and takes only O(1) time. Neither the algorithm of Chen et al. nor the algorithm of Chen and Lou provides an explicit formula for computing the control tag for routing and both algorithms take at least Ω(n) time, where n + 1 is the number of stages in the BGSEN. This paper attempts to propose an explicit formula for computing the control tag for routing in the backward network. We will demonstrate how this formula greatly simplifies the computation process and how it leads to efficient routing algorithms. In particular, an O(1)-time one-to-one routing algorithm and an efficient routing-table construction algorithm have been proposed.


Author(s):  
Akash Punhani ◽  
Pardeep Kumar ◽  
Nitin Nitin

Interconnection network is an important part of the digital system. The interconnection mainly describes the topology of the network along with the routing algorithm and flow control mechanism. The topology of the network plays an important role on the performance of the system. Mesh interconnection network was the simplest topology, but has the limited bisection bandwidth on the other hand torus and diagonal mesh was having long links. The Modified diagonal mesh network tried to replace the torodial links but was having more average path length so in proposed topology we have tried to improve the average distance using shuffle exchange network over the boundary node. In this paper, we propose the architecture of Modified Diagonal Mesh Shuffle Exchange Interconnection Network. This Modified Diagonal Mesh Shuffle Exchange Interconnection network have been compared with four popular topologies that are simple 2D Mesh, 2D Torus, Diagonal Mesh and Modified Diagonal Mesh Interconnection Network on the four traffic patterns such as Bit Complement traffic, Neighbor traffic, Tornado traffic and Uniform traffic are used for comparisonand performance analysis. We have performed the analysis with a 5% and 10% of hotspot on the Uniform Traffic. The simulation results shows that the proposed topology is performed better on bit complement traffic and can also handle the other traffic up to certain level.


2003 ◽  
Vol 7 (3) ◽  
pp. 121-123 ◽  
Author(s):  
Zhen Chen ◽  
Zeng-Ji Liu ◽  
Zhi-Liang Qiu

2016 ◽  
Vol 72 (12) ◽  
pp. 4629-4650 ◽  
Author(s):  
Reza Akbar ◽  
Ali Asghar Etedalpour ◽  
Farshad Safaei

Sign in / Sign up

Export Citation Format

Share Document