Vehicle stability control based on RBF adaptive terminal sliding mode controller

Author(s):  
Xu Liu ◽  
Stephen Shaoyi Liao ◽  
Peimiao Rong
2013 ◽  
Vol 278-280 ◽  
pp. 1510-1515 ◽  
Author(s):  
Jie Tian ◽  
Ya Qin Wang ◽  
Ning Chen

A new vehicle stability control method integrated direct yaw moment control (DYC) with active front wheel steering (AFS) was proposed. On the basis of the vehicle nonlinear model, vehicle stable domain was determined by the phase plane of sideslip angle and sideslip angular velocity. When the vehicle was outside the stable domain, DYC was firstly used to produce direct yaw moment, which can make vehicle inside the stable domain. Then AFS sliding mode control was used to make the sideslip angle and yaw rate track the reference vehicle model. The simulation results show that the integrated controller improves vehicle stability more effectively than using the AFS controller alone.


Author(s):  
Timur Agliullin ◽  
Valentin Ivanov ◽  
Mohamed Salim Kaddari ◽  
Vincenzo Ricciardi ◽  
Dzmitry Savitski ◽  
...  

2001 ◽  
Vol 29 (2) ◽  
pp. 108-132 ◽  
Author(s):  
A. Ghazi Zadeh ◽  
A. Fahim

Abstract The dynamics of a vehicle's tires is a major contributor to the vehicle stability, control, and performance. A better understanding of the handling performance and lateral stability of the vehicle can be achieved by an in-depth study of the transient behavior of the tire. In this article, the transient response of the tire to a steering angle input is examined and an analytical second order tire model is proposed. This model provides a means for a better understanding of the transient behavior of the tire. The proposed model is also applied to a vehicle model and its performance is compared with a first order tire model.


Sign in / Sign up

Export Citation Format

Share Document