integrated controller
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 2)

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1045
Author(s):  
Tian Soon Lee ◽  
Esmail Ali Alandoli ◽  
V Vijayakumar

Background Due to the high demand of robots to perform several industrial tasks, such as welding, machining, pick and place, position control in robotics has attracted high attention recently. Controllers’ improvement is also continuous specifically in terms of design simplicity and performance accuracy. This research plans to obtain the SimMechanics model of a two-degree of freedom (DOF) robot and to propose an integrated controller of a proportional–derivative (PD) controller and a fuzzy logic (FL) controller. Methodology The SimMechanics model of the 2-DOF robot is obtained using MATLAB SimMechanics toolbox from a CAD assembly design of the 2-DOF robot. Then, the proposed PD-FL integrated controller is designed and simulated in MATLAB Simulink. The PD controller is widely used for its simplicity, but it doesn’t have a satisfactory performance in difficult tasks. Furthermore, the FL controller is also easy for design and implementation even by non-experts in control theory, but it has the disadvantage of long computational time for multi-input systems due to the increased fuzzy rules. Results The FL controller is integrated with the PD controller for enhanced performance of the 2-DOF robot. The PD-FL integrated controller is developed and tested to control the 2-DOF robot for point-to-point position control and also tip trajectory tracking (TTT) such as triangular TTT and rhombic TTT. Conclusion The PD-FL integrated controller demonstrates enhanced performance compared to the conventional PD controller in both point-to-point position control and TTT. Furthermore, the PD-FL integrated controller has the advantage of less fuzzy rules which helps to overcome the computational time issue of the FL controller.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1045
Author(s):  
Tian Soon Lee ◽  
Esmail Ali Alandoli ◽  
V Vijayakumar

Background Due to the high demand of robots to perform several industrial tasks, such as welding, machining, pick and place, position control in robotics has attracted high attention recently. Controllers’ improvement is also continuous specifically in terms of design simplicity and performance accuracy. This research plans to obtain the SimMechanics model of a two-degree of freedom (DOF) robot and to propose an integrated controller of a proportional–derivative (PD) controller and a fuzzy logic (FL) controller. Methodology The SimMechanics model of the 2-DOF robot is obtained using MATLAB SimMechanics toolbox from a CAD assembly design of the 2-DOF robot. Then, the proposed PD-FL integrated controller is designed and simulated in MATLAB Simulink. The PD controller is widely used for its simplicity, but it doesn’t have a satisfactory performance in difficult tasks. Furthermore, the FL controller is also easy for design and implementation even by non-experts in control theory, but it has the disadvantage of long computational time for multi-input systems due to the increased fuzzy rules. Results The FL controller is integrated with the PD controller for enhanced performance of the 2-DOF robot. The PD-FL integrated controller is developed and tested to control the 2-DOF robot for point-to-point position control and also tip trajectory tracking (TTT) such as triangular TTT and rhombic TTT. Conclusion The PD-FL integrated controller demonstrates enhanced performance compared to the conventional PD controller in both point-to-point position control and TTT. Furthermore, the PD-FL integrated controller has the advantage of less fuzzy rules which helps to overcome the computational time issue of the FL controller.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tuan Anh Nguyen

When the vehicle moves on the road, many external factors affect the vehicle. These effects can cause oscillation and instability for the vehicle. The oscillation of the vehicle directly affects the safety and comfort of passengers. The suspension system is used to control and extinguish these oscillations. However, the conventional passive suspension system is unable to fully meet the vehicle’s requirements for stability and comfort. To improve these problems, these are much modern suspension system models that have been used in the vehicle to replace the passive suspension system. The modern suspension systems are used as the air suspension system, semiactive suspension system, and active suspension system. These systems which are controlled automatically by the controller were established based on the control methods. There are a lot of control methods which are used to control the operation of the active suspension system. These methods have their advantages and disadvantages. Almost, conventional control methods such as PID, LQR, or SMC are commonly used. However, they do not provide optimal efficiency in improving a vehicle’s oscillation. Therefore, it is necessary to establish a novel solution for the active suspension system control to improve the vehicle’s oscillation. In this paper, the method of using the double-integrated controller is proposed to solve the above problem. The double-integrated controller consists of two hydraulic actuators which are controlled completely separately. This is a completely novel and original method that can provide positive effects. This research focuses on establishing, simulating, and evaluating the novel control method (the double-integrated control) for the active suspension system. The results of the research have shown that when the vehicle is equipped with the active suspension system which is controlled by the double-integrated controller, the maximum values of displacement and acceleration of the sprung mass are significantly reduced. They reach only 6.25% and 9.10% (case 1) and 6.00% and 6.12% (case 2) compared to the conventional passive suspension system. Besides, its average values which are calculated by RMS are only about 3.91% and 4.67% (case 1) and 4.48% and 4.77% (case 2) compared to the above case. Therefore, the comfort and stability of the vehicle have been improved. This paper provides new concepts and knowledge about the double-integrated control method which will become the trend to be used in the next time for the systems of the vehicle. In the future, experimental procedures also need to be conducted to be able to more accurately evaluate the results of this research.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 349
Author(s):  
Jiawen Li ◽  
Tao Yu

In the proton exchange membrane fuel cell (PEMFC) system, the flow of air and hydrogen is the main factor influencing the output characteristics of PEMFC, and there is a coordination problem between their flow controls. Thus, the integrated controller of the PEMFC gas supply system based on distributed deep reinforcement learning (DDRL) is proposed to solve this problem, it combines the original airflow controller and hydrogen flow controller into one. Besides, edge-cloud collaborative multiple tricks distributed deep deterministic policy gradient (ECMTD-DDPG) algorithm is presented. In this algorithm, an edge exploration policy is adopted, suggesting that the edge explores including DDPG, soft actor-critic (SAC), and conventional control algorithm are employed to realize distributed exploration in the environment, and a classified experience replay mechanism is introduced to improve exploration efficiency. Moreover, various tricks are combined with the cloud centralized training policy to address the overestimation of Q-value in DDPG. Ultimately, a model-free integrated controller of the PEMFC gas supply system with better global searching ability and training efficiency is obtained. The simulation verifies that the controller enables the flows of air and hydrogen to respond more rapidly to the changing load.


Author(s):  
Xingguo Qian ◽  
Chunyan Wang ◽  
Wanzhong Zhao

In the process of preventing rollover, the expected path of the driver to achieve better anti-rollover effect is often ignored, which may lead to the deviation of vehicle from the original path. Aiming at this problem, this paper considers both anti-rollover and path tracking performance, and proposes an integrated controller based on active steering and active braking. On the one hand, it can reduce the lateral acceleration and rollover risk by restraining the front wheel angle as tracking the driver’s expected path. On the other hand, through reasonably distributing the braking force of the four tires, it can offset the additional yaw moment caused by uneven distribution and reduce the impact on vehicle trajectory as the risk of rollover occurs. In addition, an improved index of rollover is put forward to give early warning to the future moment and to prevent rollover accident effectively. Simulation and hardware-in-the-loop test results show that the proposed integrated controller can ensure that the vehicle tracks the expected path well and achieves rollover prevention effectively.


Sign in / Sign up

Export Citation Format

Share Document