Acoustic beam-based man-made underwater landmark detection method for multi-beam sonar

Author(s):  
Juhyun Pyo ◽  
Seokyong Song ◽  
Son-Cheol Yu
Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5360
Author(s):  
Taehyung Kim ◽  
Jiwon Mok ◽  
Euichul Lee

For accurate and fast detection of facial landmarks, we propose a new facial landmark detection method. Previous facial landmark detection models generally perform a face detection step before landmark detection. This greatly affects landmark detection performance depending on which face detection model is used. Therefore, we propose a model that can simultaneously detect a face region and a landmark without performing the face detection step before landmark detection. The proposed single-shot detection model is based on the framework of YOLOv3, a one-stage object detection method, and the loss function and structure are altered to learn faces and landmarks at the same time. In addition, EfficientNet-B0 was utilized as the backbone network to increase processing speed and accuracy. The learned database used 300W-LP with 64 facial landmarks. The average normalized error of the proposed model was 2.32 pixels. The processing time per frame was about 15 milliseconds, and the average precision of face detection was about 99%. As a result of the evaluation, it was confirmed that the single-shot detection model has better performance and speed than the previous methods. In addition, as a result of using the COFW database, which has 29 landmarks instead of 64 to verify the proposed method, the average normalization error was 2.56 pixels, which was also confirmed to show promising performance.


2021 ◽  
Vol E104.D (8) ◽  
pp. 1359-1366
Author(s):  
Yu SONG ◽  
Xu QIAO ◽  
Yutaro IWAMOTO ◽  
Yen-Wei CHEN ◽  
Yili CHEN

Author(s):  
K. Pegg-Feige ◽  
F. W. Doane

Immunoelectron microscopy (IEM) applied to rapid virus diagnosis offers a more sensitive detection method than direct electron microscopy (DEM), and can also be used to serotype viruses. One of several IEM techniques is that introduced by Derrick in 1972, in which antiviral antibody is attached to the support film of an EM specimen grid. Originally developed for plant viruses, it has recently been applied to several animal viruses, especially rotaviruses. We have investigated the use of this solid phase IEM technique (SPIEM) in detecting and identifying enteroviruses (in the form of crude cell culture isolates), and have compared it with a modified “SPIEM-SPA” method in which grids are coated with protein A from Staphylococcus aureus prior to exposure to antiserum.


Sign in / Sign up

Export Citation Format

Share Document