STOG: A Traffic Prediction Scheme Based on Spatio-Temporal Optimized Graph Neural Networks

Author(s):  
Shuting Hu ◽  
Ze Yu ◽  
Danyang Zhou ◽  
Yi Zhou ◽  
Nan Cheng ◽  
...  
2021 ◽  
Author(s):  
Zhaonan Wang ◽  
Renhe Jiang ◽  
Zekun Cai ◽  
Zipei Fan ◽  
Xin Liu ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. 7760-7775
Author(s):  
Maosen Li ◽  
Siheng Chen ◽  
Yangheng Zhao ◽  
Ya Zhang ◽  
Yanfeng Wang ◽  
...  

2021 ◽  
Author(s):  
Yi-Fan Li ◽  
Bo Dong ◽  
Latifur Khan ◽  
Bhavani Thuraisingham ◽  
Patrick T. Brandt ◽  
...  

Author(s):  
Cen Chen ◽  
Kenli Li ◽  
Sin G. Teo ◽  
Xiaofeng Zou ◽  
Kang Wang ◽  
...  

Traffic prediction is of great importance to traffic management and public safety, and very challenging as it is affected by many complex factors, such as spatial dependency of complicated road networks and temporal dynamics, and many more. The factors make traffic prediction a challenging task due to the uncertainty and complexity of traffic states. In the literature, many research works have applied deep learning methods on traffic prediction problems combining convolutional neural networks (CNNs) with recurrent neural networks (RNNs), which CNNs are utilized for spatial dependency and RNNs for temporal dynamics. However, such combinations cannot capture the connectivity and globality of traffic networks. In this paper, we first propose to adopt residual recurrent graph neural networks (Res-RGNN) that can capture graph-based spatial dependencies and temporal dynamics jointly. Due to gradient vanishing, RNNs are hard to capture periodic temporal correlations. Hence, we further propose a novel hop scheme into Res-RGNN to utilize the periodic temporal dependencies. Based on Res-RGNN and hop Res-RGNN, we finally propose a novel end-to-end multiple Res-RGNNs framework, referred to as “MRes-RGNN”, for traffic prediction. Experimental results on two traffic datasets have demonstrated that the proposed MRes-RGNN outperforms state-of-the-art methods significantly.


Author(s):  
Jelena Simeunovic ◽  
Baptiste Schubnel ◽  
Pierre Jean Alet ◽  
Rafael E. Carrillo

2020 ◽  
Author(s):  
Artur Schweidtmann ◽  
Jan Rittig ◽  
Andrea König ◽  
Martin Grohe ◽  
Alexander Mitsos ◽  
...  

<div>Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.</div>


Sign in / Sign up

Export Citation Format

Share Document