Throughput Optimization in Energy Harvesting based Cognitive IoT with Cooperative Sensing

Author(s):  
Yan Long ◽  
Ye Li ◽  
Honghao Ju ◽  
Rong He ◽  
Xuming Fang
2021 ◽  
Vol 38 (3) ◽  
pp. 739-745
Author(s):  
Anitha Bujunuru ◽  
Srinivasulu Tadisetty

In cognitive radio, throughput of secondary user (SU) will depend on spectrum sensing performance and available power of secondary user to transmits data. As the secondary user dissipates energy for spectrum sensing operation and to maintain cooperation among multiple SUs can results in reduction of transmission power. To compensate this energy, an energy harvesting technique has introduced in cognitive radio by which SU can harvest energy from primary (PU) signal and this harvested energy will be utilized to transmit its data and increases the lifetime. In a traditional Energy Harvesting Cognitive Radio Network (EHCRN), SU can perform sensing and harvesting in separate slots which decrease the transmission time of secondary user results in reduction in throughput. To enhance the throughput of secondary user, a parallel operation of spectrum sensing and energy harvesting has been discussed. This parallel operation results in reduction of energy consumption and increases harvested energy that makes more energy to be available for transmission, which results in an increase of SU throughput. Simulation results using MATLAB shows that the proposed Parallel Sensing and Energy Harvesting CRN have improved the throughput compared to Traditional Energy Harvesting CRN and are analyzed with different parameters.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 330 ◽  
Author(s):  
Hakan Murat Karaca

By harvesting energy from ambient radio frequency (RF) signals, significant progress has been achieved in wireless networks self-maintaining their life cycles. Motivated by this and improved spectrum reuse by combined use of overlay/underlay modes of cognitive radio networks (CRNs), this paper proposes a novel multi-channel (m-channel) allocation performance maximization algorithm for low-power mobiles. CRNs, called secondary transmitters (STs), can harvest energy from RF signals by nearby active primary transmitters (PTs). In the proposed scheme, PTs and STs are distributed as independent homogeneous Poisson point processes and contact their receivers at fixed distances. Each PT contains a guard zone to protect its intended receiver from ST interference, and provides RF energy to STs located in its harvesting zone. Prioritization of STs during opportunistic allocation of channels is critical as properties like energy level and harvesting capability improve channel distribution performance. A novel metric is proposed that prioritizes STs based on initial energy levels, harvesting capability, and number of channels through which they can transmit. For comparison, three algorithms were considered: a greedy mechanism for m-channel allocation of hybrid CRNs without harvesting, the proposed m-channel allocation schemes based on maximum independent sets (MIS), and the proposed metric of hybrid CRNs with harvesting capability. The simulations show that the proposed m-channel allocation method based on MIS outperforms the greedy algorithm. The proposed m-channel allocation using the proposed metric on hybrid CRNs with energy harvesting ability produced the best performance of the three methods, proving the superiority of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document