Delay-dependent controller design for networked control systems with long time delays: an iterative LMI method

Author(s):  
Shanbin Li ◽  
Zhi Wang ◽  
Youxian Sun
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yilin Wang ◽  
Hamid Reza Karimi ◽  
Zhengrong Xiang

We consider the problems of robust stability and control for a class of networked control systems with long-time delays. Firstly, a nonlinear discrete time model with mode-dependent time delays is proposed by converting the uncertainty of time delay into the uncertainty of parameter matrices. We consider a probabilistic case where the system is switched among different subsystems, and the probability of each subsystem being active is defined as its occurrence probability. For a switched system with a known subsystem occurrence probabilities, we give a stochastic stability criterion in terms of linear matrix inequalities (LMIs). Then, we extend the results to a more practical case where the subsystem occurrence probabilities are uncertain. Finally, a simulation example is presented to show the efficacy of the proposed method.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yanfeng Wang ◽  
Peiliang Wang ◽  
Zuxin Li ◽  
Huiying Chen

This paper investigates the observer-based controller design problem for a class of nonlinear networked control systems with random time-delays. The nonlinearity is assumed to satisfy a global Lipschitz condition and two dependent Markov chains are employed to describe the time-delay from sensor to controller (S-C delay) and the time-delay from controller to actuator (C-A delay), respectively. The transition probabilities of S-C delay and C-A delay are both assumed to be partly inaccessible. Sufficient conditions on the stochastic stability for the closed-loop systems are obtained by constructing proper Lyapunov functional. The methods of calculating the controller and the observer gain matrix are also given. Two numerical examples are used to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document