An Adaptive Traffic Signal Timing Scheme for Bus Priority at Isolated Intersection

Author(s):  
Weihua Bao ◽  
Quanlin Chen ◽  
Xiaoxia Xu
2012 ◽  
Vol 209-211 ◽  
pp. 814-817 ◽  
Author(s):  
Ping Wang ◽  
Qun Yang

The objective of this paper is to investigate genetic algorithms (GA) on traffic signal timing at a congested isolated intersection. The objective function for GA modeling was established on the strategy of minimizing average delay and GA was applied to search for the optimal signal timing. Then microsimulation is used to compare the optimized timings produced by the GA with those obtained for the same intersection using Synchro. Results indicated that applying GA results in lower values of average delay and average number of stops in congested condition than applying Synchro.


2020 ◽  
Vol 14 (1) ◽  
pp. 126-140
Author(s):  
. Do Van Manh ◽  
Liang- Tay Lin ◽  
Pei Liu ◽  
Dinh Tuan Hai

Background: In optimal traffic signal timing, some researchers proposed a single objective genetic algorithm to optimize the timing plan at an isolated intersection. However, the genetic algorithm belongs to a natural selection procession. It means that a suggested model might have a local, optimal result instead of global optimization. A few researchers have tried to avoid local optimization values by making many assumptions for the suggested model, these estimations lacked comprehensive theoretical bases in the transportation field. Objective: The objective of this study is to contribute a comprehensive optimization solution, by applying multiple objective genetic algorithms, to minimize the effective green time and cycle length at a complex urban intersection. Methods: First, the fitness function was established by the minimum issues of average control delay and queue length at the complex isolated intersection. Secondly, constraint functions were identified based on a scientific basis to provide a comprehensive hypothetical model. After running the hypothetical model with single and multiple objective genetic algorithms and real traffic flow data, the results were compared between the use of multiple genetic algorithms and the use of a single-objective genetic algorithm, between an existing traffic signal timing plan and a suggested traffic signal timing plan. Then, the traffic simulation model for the complex intersection was generated to validate the effectiveness of the suggested method. Results: After comparison, the suggested model was found to be more efficient than the existing traffic signal timing at the complex intersection. Conclusion: This study demonstrated multiple objective genetic algorithms that overwhelmed the single objective genetic algorithm in optimal traffic signal timing. The multiple objective genetic algorithms could be effectively used to handle traffic optimization at a complex large-scale intersection. Furthermore, a comprehensive solution of applying multiple genetic algorithms to deal with traffic signal optimization has been generated in this research.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Li ◽  
Lijie Yu ◽  
Siran Tao ◽  
Kuanmin Chen

For the purpose of improving the efficiency of traffic signal control for isolate intersection under oversaturated conditions, a multi-objective optimization algorithm for traffic signal control is proposed. Throughput maximum and average queue ratio minimum are selected as the optimization objectives of the traffic signal control under oversaturated condition. A simulation environment using VISSIM SCAPI was utilized to evaluate the convergence and the optimization results under various settings and traffic conditions. It is written by C++/CRL to connect the simulation software VISSIM and the proposed algorithm. The simulation results indicated that the signal timing plan generated by the proposed algorithm has good efficiency in managing the traffic flow at oversaturated intersection than the commonly utilized signal timing optimization software Synchro. The update frequency applied in the simulation environment was 120 s, and it can meet the requirements of signal timing plan update in real filed. Thus, the proposed algorithm has the capability of searching Pareto front of the multi-objective problem domain under both normal condition and over-saturated condition.


Sign in / Sign up

Export Citation Format

Share Document