Mapping between Relational Database Schema and OWL Ontology for Deep Annotation

Author(s):  
Zhuoming Xu ◽  
Shichao Zhang ◽  
Yisheng Dong
Author(s):  
I. Boates ◽  
G. Agugiaro ◽  
A. Nichersu

<p><strong>Abstract.</strong> Recent advances in semantic 3D city modelling and a demand from utility network operators for multi-utility data models integration have contributed to the emergence of an open Application Domain Extension (ADE) of the CityGML data model tailored to multiple types of utility networks. This extension, called the Utility Network ADE, is still in active development. However, work is already well underway to create data samples and to develop methods of modelling thereupon. In this paper, a mapping of the Utility Network ADE data model to a relational database schema is introduced. A sample of a freshwater network using the Utility Network ADE and based on data from the city of Nanaimo, Canada, is also presented. This sample has also been imported into a relational database schema built upon the 3DCityDB (a database implementation of CityGML) extended with a schema of the Utility Network ADE. Further to this, a series of basic network analysis functions have been defined and implemented in SQL to interact with the database so as to carry out sample atomic processes involved in network modelling, such as reading semantic properties of elements, calculating composite physical parameters of the network as a whole, and performing simple topological routing to serve as a guiding example for further and more complex development. A brief outlook is also presented, suggesting areas with high potential for future research and development of this nascent data model.</p>


Author(s):  
Abad Shah ◽  
Jacob Adeniyi ◽  
Tariq Al Tuwairqi

The Web and XML have influenced all walks of lives of those who transact business over the Internet. People like to do their transactions from their homes to save time and money. For example, customers like to pay their utility bills and other banking transactions from their homes through the Internet. Most companies, including banks, maintain their records using relational database technology. But the traditional relational database technology is unable to provide all these new facilities to the customers. To make the traditional relational database technology cope with the Web and XML technologies, we need a transformation between the XML technology and the relational database technology as middleware. In this chapter, we present a new and simpler algorithm for this purpose. This algorithm transforms a schema of a XML document into a relational database schema, taking into consideration the requirement of relational database technology.


2009 ◽  
pp. 2360-2383
Author(s):  
Guntis Barzdins ◽  
Janis Barzdins ◽  
Karlis Cerans

This chapter introduces the UML profile for OWL as an essential instrument for bridging the gap between the legacy relational databases and OWL ontologies. We address one of the long-standing relational database design problems where initial conceptual model (a semantically clear domain conceptualization ontology) gets “lost” during conversion into the normalized database schema. The problem is that such “loss” makes database inaccessible for direct query by domain experts familiar with the conceptual model only. This problem can be avoided by exporting the database into RDF according to the original conceptual model (OWL ontology) and formulating semantically clear queries in SPARQL over the RDF database. Through a detailed example we show how UML/OWL profile is facilitating this new and promising approach.


Sign in / Sign up

Export Citation Format

Share Document