A New Short Pulse Generator for Ground Penetrating Radar

Author(s):  
Jian-Bin Wu ◽  
Mao Tian
2019 ◽  
Vol 12 (23) ◽  
pp. 80-89
Author(s):  
Israa J. Muhsin

  Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processing such as filtering. Where different filters like (DC adjustment, triangular FIR, delete mean trace, FIR) have been applied on output image as well as the simulation of the soil and the buried objects layers have been obtained using GPR simulation program.


2014 ◽  
Vol 41 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Leslie Odartey Mills ◽  
Nii Attoh-Okine

Ground penetrating radar (GPR) is a geophysical method used in highway maintenance to determine subsurface conditions within the right-of-way. GPR operates by using short-pulse radiation of radio-frequency electromagnetic energy to record dissimilarities in electrical properties of subsurface materials. As such, GPR results are susceptible to the transmission frequency used and the inherent properties of different subsurface materials. Uncertainty due to these susceptibilities can lead to ambiguity in the interpretation of GPR data. To distinguish heterogeneity from uncertainty, this paper modeled GPR data on pavement layer thickness using Markov Chain Monte Carlo (MCMC) simulation. MCMC is able to model heterogeneity within a given dataset and was employed to estimate and predict layer thicknesses obtained from GPR data. Simulated results were consistent with field data and provided statistical estimates of missing values in the original dataset. This analysis will aid relevant stakeholders to verify and determine consistency in field GPR data.


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


Sign in / Sign up

Export Citation Format

Share Document