pulse signal
Recently Published Documents


TOTAL DOCUMENTS

630
(FIVE YEARS 171)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Bassem Ibrahim ◽  
Roozbeh Jafari

AbstractContinuous monitoring of blood pressure (BP) is essential for the prediction and the prevention of cardiovascular diseases. Cuffless BP methods based on non-invasive sensors integrated into wearable devices can translate blood pulsatile activity into continuous BP data. However, local blood pulsatile sensors from wearable devices suffer from inaccurate pulsatile activity measurement based on superficial capillaries, large form-factor devices and BP variation with sensor location which degrade the accuracy of BP estimation and the device wearability. This study presents a cuffless BP monitoring method based on a novel bio-impedance (Bio-Z) sensor array built in a flexible wristband with small-form factor that provides a robust blood pulsatile sensing and BP estimation without calibration methods for the sensing location. We use a convolutional neural network (CNN) autoencoder that reconstructs an accurate estimate of the arterial pulse signal independent of sensing location from a group of six Bio-Z sensors within the sensor array. We rely on an Adaptive Boosting regression model which maps the features of the estimated arterial pulse signal to systolic and diastolic BP readings. BP was accurately estimated with average error and correlation coefficient of 0.5 ± 5.0 mmHg and 0.80 for diastolic BP, and 0.2 ± 6.5 mmHg and 0.79 for systolic BP, respectively.


2022 ◽  
Vol 10 (1) ◽  
pp. 82
Author(s):  
Denis Manul’chev ◽  
Andrey Tyshchenko ◽  
Mikhail Fershalov ◽  
Pavel Petrov

3D sound propagation modeling in the context of acoustic noise monitoring problems is considered. A technique of effective source spectrum reconstruction from a reference single-hydrophone measurement is discussed, and the procedure of simulation of sound exposure level (SEL) distribution over a large sea area is described. The proposed technique is also used for the modeling of pulse signal waveforms at other receiver locations, and results of a direct comparison with the pulses observed in the experimental data is presented.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 415
Author(s):  
Dingqian Yang ◽  
Weining Zhang ◽  
Guanghu Xu ◽  
Tiangeng Li ◽  
Jiexin Shen ◽  
...  

As one of the most effective methods to detect the partial discharge (PD) of transformers, high frequency PD detection has been widely used. However, this method also has a bottleneck problem; the biggest problem is the mixed pulse interference under the fixed length sampling. Therefore, this paper focuses on the study of a new pulse segmentation technology, which can separate the partial discharge pulse from the sampling signal containing impulse noise so as to suppress the interference of pulse noise. Based on the characteristics of the high-order-cumulant variation at the rising edge of the pulse signal, a method for judging the starting and ending time of the pulse based on the high-order-cumulant is designed, which can accurately extract the partial discharge pulse from the original data. Simulation results show that the location accuracy of the proposed method can reach 94.67% without stationary noise. The field test shows that the extraction rate of the PD analog signal can reach 79% after applying the segmentation method, which has a great improvement compared with a very low location accuracy rate of 1.65% before using the proposed method.


2021 ◽  
Vol 12 (4) ◽  
pp. 323-331
Author(s):  
A. V. Isaev ◽  
U. V. Suchodolov ◽  
A. S. Sushko ◽  
A. A. Sheinikau

In modern diagnostics, much attention is paid to measuring of time parameters, as well as their change over time. The purpose of this work is to develop a method for measuring of time intervals which made it possible to increase the measurement accuracy by reducing errors associated with the instability of main parameters of the pulse signal.In the most of approaches used, the error associated with the instability of main parameters of signals under study is not enough taken into account. As an alternative, a spectral method is proposed in which the measurement of time intervals, as well as their changes, is performed based on the analysis of pulse sequences formed on the basis of characteristic points of the measured signal. For this a double pulse sequence was considered, an equation for the amplitudes of its spectral components was obtained, and in accordance with this it was determined that the delay time between double pulses is the most informative parameter.Using the Mathcad software, an analysis of the sensitivity regions was carried out for the change in the main parameters of the pulse sequence, namely the repetition rate, as the main destabilizing factor.As a result of the implementation of the developed technique, a structural diagram of the measuring system is proposed and an analysis of the measurement error associated with the instability of the main parameters of the pulse sequence is carried out. This error is estimated to be less than 0.01 %.The considered method makes it possible to increase the accuracy of measuring time intervals due to the almost complete elimination of the influence of the instability of the reference frequency and the amplitude of the generated pulses which is unattainable with modern hardware, including digital signal processing. 


2021 ◽  
Author(s):  
Vitaly V. Boronoev ◽  
Vyacheslav D. Ompokov ◽  
Nataly V. Pupysheva ◽  
Irina V. Naguslaeva

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8333
Author(s):  
Yang Bai ◽  
Xinliang Wang ◽  
Junru Shi ◽  
Fan Yang ◽  
Jun Ruan ◽  
...  

Second-order Zeeman frequency shift is one of the major systematic factors affecting the frequency uncertainty performance of cesium atomic fountain clock. Second-order Zeeman frequency shift is calculated by experimentally measuring the central frequency of the (1,1) or (−1,−1) magnetically sensitive Ramsey transition. The low-frequency transition method can be used to measure the magnetic field strength and to predict the central fringe of (1,1) or (−1,−1) magnetically sensitive Ramsey transition. In this paper, we deduce the formula for magnetic field measurement using the low-frequency transition method and measured the magnetic field distribution of 4 cm inside the Ramsey cavity and 32 cm along the flight region experimentally. The result shows that the magnetic field fluctuation is less than 1 nT. The influence of low-frequency pulse signal duration on the accuracy of magnetic field measurement is studied and the optimal low-frequency pulse signal duration is determined. The central fringe of (−1,−1) magnetically sensitive Ramsey transition can be predicted by using a numerical integrating of the magnetic field “map”. Comparing the predicted central fringe with that identified by Ramsey method, the frequency difference between these two is, at most, a fringe width of 0.3. We apply the experimentally measured central frequency of the (−1,−1) Ramsey transition to the Breit-Rabi formula, and the second-order Zeeman frequency shift is calculated as 131.03 × 10−15, with the uncertainty of 0.10 × 10−15.


2021 ◽  
Vol 163 ◽  
pp. 108537
Author(s):  
Li Sangang ◽  
Cheng Yi ◽  
Yang Li ◽  
Wang Lei ◽  
Liu Mingzhe

2021 ◽  
Vol 22 (4) ◽  
pp. 729-733
Author(s):  
A.A. Druzhinin ◽  
I.T. Kogut ◽  
V.I. Golota ◽  
S.I. Nichkalo ◽  
Y. M. Khoverko ◽  
...  

The use of an integrated sensor element as an addition of inverter, which converts the resistance of a sensitive element into the level of the output pulse signal, is investigated. Inverter circuits with different control options for sub-channel areas of MOS transistors are modeled in the LTSpice program. Based on the simulation results, dependencies graphs of the output signal amplitude on the resistance of a sensitive element and sensor’s sensitivity are drawn, and the shapes of the output signals are shown.


Sign in / Sign up

Export Citation Format

Share Document