Multipath Channel Model in Underground Mining UWB LOS Environments

Author(s):  
Yanfen Wang ◽  
Chuanxiang Zhang
Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 367 ◽  
Author(s):  
Pablo Palacios Játiva ◽  
Milton Román Cañizares ◽  
Cesar A. Azurdia-Meza ◽  
David Zabala-Blanco ◽  
Ali Dehghan Firoozabadi ◽  
...  

This paper proposes two solutions based on angle diversity receivers (ADRs) to mitigate inter-cell interference (ICI) in underground mining visible light communication (VLC) systems, one of them is a novel approach. A realistic VLC system based on two underground mining scenarios, termed as mining roadway and mine working face, is developed and modeled. A channel model based on the direct component in line-of-sight (LoS) and reflections of non-line-of-sight (NLoS) links is considered, as well as thermal and shot noises. The design and mathematical models of a pyramid distribution and a new hemi-dodecahedral distribution are addressed in detail. The performances of these approaches, accompanied by signal combining schemes, are evaluated with the baseline of a single photo-diode in reception. Results show that the minimum lighting standards established in both scenarios are met. As expected, the root-mean-square delay spread decreases as the distance between the transmitters and receivers increases. Furthermore, the hemi-dodecahedron ADR in conjunction with the maximum ratio combining (MRC) scheme, presents the best performance in the evaluated VLC system, with a maximum user data rate of 250 Mbps in mining roadway and 120 Mbps in mine working face, received energy per bit/noise power of 32 dB and 23 dB, respectively, when the bit error rate corresponds to 10 − 4 , and finally, values of 120 dB in mining roadway and 118 dB in mine working face for signal-to-interference-plus-noise ratio are observed in a cumulative distribution function.


Author(s):  
A. Lauri ◽  
R. Cardinali ◽  
F. Colone ◽  
P. Lombardo ◽  
T. Bucciarelli

Author(s):  
Noor Nateq Alfaisaly ◽  
Suhad Qasim Naeem ◽  
Azhar Hussein Neama

Worldwide interoperability microwave access (WiMAX) is an 802.16 wireless standard that delivers high speed, provides a data rate of 100 Mbps and a coverage area of 50 km. Voice over internet protocol (VoIP) is flexible and offers low-cost telephony for clients over IP. However, there are still many challenges that must be addressed to provide a stable and good quality voice connection over the internet. The performance of various parameters such as multipath channel model and bandwidth over the Star trajectoryWiMAX network were evaluated under a scenario consisting of four cells. Each cell contains one mobile and one base station. Network performance metrics such as throughput and MOS were used to evaluate the best performance of VoIP codecs. Performance was analyzed via OPNET program14.5. The result use of multipath channel model (disable) was better than using the model (ITU pedestrian A). The value of the throughput at 15 dB was approximately 1600 packet/sec, and at -1 dB was its value 1300 packet/se. According to data, the Multipath channel model of the disable type the value of the MOS was better than the ITU Pedestrian A type.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 185445-185464
Author(s):  
Pablo Palacios Jativa ◽  
Cesar A. Azurdia-Meza ◽  
Ivan Sanchez ◽  
Fabian Seguel ◽  
David Zabala-Blanco ◽  
...  

2016 ◽  
Vol 90 (1) ◽  
pp. 245-257 ◽  
Author(s):  
Fang Huang ◽  
Xuefei Liao ◽  
Yong Bai

Sign in / Sign up

Export Citation Format

Share Document