Jeffreys' prior yields the asymptotic minimax redundancy

Author(s):  
B.S. Clarke ◽  
A.R. Barron
1994 ◽  
Vol 41 (1) ◽  
pp. 37-60 ◽  
Author(s):  
Bertrand S. Clarke ◽  
Andrew R. Barron
Keyword(s):  

2004 ◽  
Vol 2004 (8) ◽  
pp. 421-429 ◽  
Author(s):  
Souad Assoudou ◽  
Belkheir Essebbar

This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC) techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.


2002 ◽  
Vol 21 (3) ◽  
pp. 78-82
Author(s):  
V. S.S. Yadavalli ◽  
P. J. Mostert ◽  
A. Bekker ◽  
M. Botha

Bayesian estimation is presented for the stationary rate of disappointments, D∞, for two models (with different specifications) of intermittently used systems. The random variables in the system are considered to be independently exponentially distributed. Jeffreys’ prior is assumed for the unknown parameters in the system. Inference about D∞ is being restrained in both models by the complex and non-linear definition of D∞. Monte Carlo simulation is used to derive the posterior distribution of D∞ and subsequently the highest posterior density (HPD) intervals. A numerical example where Bayes estimates and the HPD intervals are determined illustrates these results. This illustration is extended to determine the frequentistical properties of this Bayes procedure, by calculating covering proportions for each of these HPD intervals, assuming fixed values for the parameters.


Bernoulli ◽  
2012 ◽  
Vol 18 (2) ◽  
pp. 496-519 ◽  
Author(s):  
Simon Guillotte ◽  
François Perron

2014 ◽  
Vol 27 (19) ◽  
pp. 7270-7284 ◽  
Author(s):  
Nicholas Lewis

Abstract Insight is provided into the use of objective-Bayesian methods for estimating climate sensitivity by considering their relationship to transformations of variables in the context of a simple case considered in a previous study, and some misunderstandings about Bayesian inference are discussed. A simple model in which climate sensitivity (S) and effective ocean heat diffusivity (Kυ) are the only parameters varied is used, with twentieth-century warming attributable to greenhouse gases (AW) and effective ocean heat capacity (HC) being the only data-based observables. Probability density functions (PDFs) for AW and HC are readily derived that represent valid independent objective-Bayesian posterior PDFs, provided the error distribution assumptions involved in their construction are justified. Using them, a standard transformation of variables provides an objective joint posterior PDF for S and Kυ; integrating out Kυ gives a marginal PDF for S. Close parametric approximations to the PDFs for AW and HC are obtained, enabling derivation of likelihood functions and related noninformative priors that give rise to the objective posterior PDFs that were computed initially. Bayes’s theorem is applied to the derived AW and HC likelihood functions, demonstrating the effect of differing prior distributions on PDFs for S. Use of the noninformative Jeffreys prior produces an identical PDF to that derived using the transformation-of-variables approach. It is shown that similar inference for S to that based on these two alternative objective-Bayesian approaches is obtained using a profile likelihood method on the derived joint likelihood function for AW and HC.


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Edward Shitsi ◽  
Emmanuel K. Boafo ◽  
Felix Ameyaw ◽  
H. C. Odoi

Abstract Quantification of common cause failure (CCF) parameters and their application in multi-unit PSA are important to the safety and operation of nuclear power plants (NPPs) on the same site. CCF quantification mainly involves the estimation of potential failure of redundant components of systems in a NPP. The components considered in quantification of CCF parameters include motor operated valves, pumps, safety relief valves, air-operated valves, solenoid-operated valves, check valves, diesel generators, batteries, inverters, battery chargers, and circuit breakers. This work presents the results of the CCF parameter quantification using check valves and pumps. The systems considered as case studies for the demonstration of the proposed methodology are auxiliary feedwater system (AFWS) and high-pressure safety injection (HPSI) systems of a pressurized water reactor (PWR). The posterior estimates of alpha factors assuming two different prior distributions (Uniform Dirichlet prior and Jeffreys prior) using the Bayesian method were investigated. This analysis is important due to the fact that prior distributions assumed for alpha factors may affect the shape of posterior distribution and the uncertainty of the mean posterior estimates. For the two different priors investigated in this study, the shape of the posterior distribution is not influenced by the type of prior selected for the analysis. The mean of the posterior distributions was also analyzed at 90% confidence level. These results show that the type of prior selected for Bayesian analysis could have effects on the uncertainty interval (or the confidence interval) of the mean of the posterior estimates. The longer the confidence interval, the better the type of prior selected at a particular confidence level for Bayesian analysis. These results also show that Jeffreys prior is preferred over Uniform Dirichlet prior for Bayesian analysis because it yields longer confidence intervals (or shorter uncertainty interval) at 90% confidence level discussed in this work.


Sign in / Sign up

Export Citation Format

Share Document