Subpicosecond pulse generator based on phase modulator and dual-stage nonlinear pulse compressor

Author(s):  
Dong Wang ◽  
Li Huo ◽  
Qiang Wang ◽  
Caiyun Lou
2015 ◽  
Vol 33 (3) ◽  
pp. 511-518 ◽  
Author(s):  
Song Li ◽  
Jing-Ming Gao ◽  
Han-Wu Yang ◽  
Bao-Liang Qian

AbstractIn this paper, a new technical scheme of high-voltage, long-pulse generator, mostly based on solid-state power devices, including magnetic pulse compressor, Blumlein-type rolled strip pulse-forming line (RSPFL) and inductive voltage adder (IVA), is proposed and investigated numerically and experimentally. The generator has potential advantages of high average power level, high repetitive rate capability, long lifetime, and long pulse achievability, which meet the requirements of military and industrial application of the pulsed power technology. Specifically, a two-stage magnetic pulse compressor was set up with iron-based amorphous cores. Total compression ratio of the device is approximately 12 and the achieved voltage efficiency is up to 92%. Low impedance, long-duration Blumlein-type RSPFL was established with characteristic impendence and electrical length of 3 Ω and 100 ns, respectively. Mylar film was selected as the solid-state dielectric. Increased by a four-stage IVA, typical quasi-square pulse was obtained with peak current of 2.3 kA and duration over 200 ns. As the resistance of the dummy load was measured to be 60 Ω, the peak voltage was approximately 138 kV. Experiments show reasonable agreement with numerical analysis.


Author(s):  
Qiang Wang ◽  
Li Huo ◽  
Yanfei Xing ◽  
Caiyun Lou ◽  
Bingkun Zhou

2020 ◽  
Vol 99 (7) ◽  

Introduction: Vagus nerve stimulation is a palliative treatment for patients with refractory epilepsy to reduce the frequency and intensity of seizures. A bipolar helical electrode is placed around the left vagus nerve at the cervical level and is connected to the pulse generator placed in a subcutaneous pocket, most commonly in the subclavian region. Methods: Between March 1998 and October 2019, we performed 196 procedures related to the vagal nerve stimulation at the Neurosurgery Department in Motol University Hospital. Of these, 126 patients were vagal nerve stimulator implantation surgeries for intractable epilepsy. The cases included 69 female and 57 male patients with mean age at the time of the implantation surgery 22±12.4 years (range 2.1−58.4 years). Results: Nine patients (7.1%) were afflicted by complications related to implantation. Surgical complications included postoperative infection in 1.6%, VNS-associated arrhythmias in 1.6%, jugular vein bleeding in 0.8% and vocal cord paresis in 2.4%. One patient with vocal cord palsy also suffered from severe dysphagia. One patient (0.8%) did not tolerate extra stimulation with magnet due to a prolonged spasm in his throat. The extra added benefit of vagus stimulation in one patient was a significant reduction of previously regular severe headaches. Conclusion: Vagus nerve stimulation is an appropriate treatment for patients with drug-resistant epilepsy who are not candidates for focal resective surgery. Implantation of the vagus nerve stimulator is a relatively safe operative procedure.


1983 ◽  
Vol 102 (4) ◽  
pp. 499-504 ◽  
Author(s):  
M. J. D'Occhio ◽  
B. D. Schanbacher ◽  
J. E. Kinder

Abstract. The acute castrate ram (wether) was used as an experimental model to investigate the site(s) of feedback on luteinizing hormone (LH) by testosterone, dihydrotestosterone and oestradiol. At the time of castration, wethers were implanted subdermally with Silastic capsules containing either crystalline testosterone (three 30 cm capsules), dihydrotestosterone (five 30 cm capsules) or oestradiol (one 6.5 cm capsule). Blood samples were taken at 10 min intervals for 6 h 2 weeks after implantation to determine serum steroid concentrations and to characterize the patterns of LH secretion. Pituitary LH response to exogenous LRH (5 ng/kg body weight) were also determined at the same time. The steroid implants produced serum concentrations of the respective hormones which were either one-third (testosterone) or two-to-four times (dihydrotestosterone, oestradiol) the levels measured in rams at the time of castration. Non-implanted wethers showed rhythmic pulses of LH (pulse interval 40–60 min) and had elevated LH levels (16.1 ± 1.6 ng/ml; mean ± se) 2 weeks after castration. All three steroids suppressed pulsatile LH release and reduced mean LH levels (to below 3 ng/ml) and pituitary LH responses to LRH. Inhibition of pulsatile LH secretion by all three steroids indicated that testosterone as well as its androgenic and oestrogenic metabolites can inhibit the LRH pulse generator in the hypothalamus. Additional feedback on the pituitary was indicated by the dampened LH responses to exogenous LRH.


Sign in / Sign up

Export Citation Format

Share Document