Reservoir Computing Meets Wi-Fi in Software Radios: Neural Network-based Symbol Detection using Training Sequences and Pilots

Author(s):  
Lianjun Li ◽  
Lingjia Liu ◽  
Jianzhong Zhang ◽  
Jonathan D. Ashdown ◽  
Yang Yi
2020 ◽  
Vol 34 (01) ◽  
pp. 1266-1273 ◽  
Author(s):  
Zhou Zhou ◽  
Lingjia Liu ◽  
Vikram Chandrasekhar ◽  
Jianzhong Zhang ◽  
Yang Yi

Conventional reservoir computing (RC) is a shallow recurrent neural network (RNN) with fixed high dimensional hidden dynamics and one trainable output layer. It has the nice feature of requiring limited training which is critical for certain applications where training data is extremely limited and costly to obtain. In this paper, we consider two ways to extend the shallow architecture to deep RC to improve the performance without sacrificing the underlying benefit: (1) Extend the output layer to a three layer structure which promotes a joint time-frequency processing to neuron states; (2) Sequentially stack RCs to form a deep neural network. Using the new structure of the deep RC we redesign the physical layer receiver for multiple-input multiple-output with orthogonal frequency division multiplexing (MIMO-OFDM) signals since MIMO-OFDM is a key enabling technology in the 5th generation (5G) cellular network. The combination of RNN dynamics and the time-frequency structure of MIMO-OFDM signals allows deep RC to handle miscellaneous interference in nonlinear MIMO-OFDM channels to achieve improved performance compared to existing techniques. Meanwhile, rather than deep feedforward neural networks which rely on a massive amount of training, our introduced deep RC framework can provide a decent generalization performance using the same amount of pilots as conventional model-based methods in 5G systems. Numerical experiments show that the deep RC based receiver can offer a faster learning convergence and effectively mitigate unknown non-linear radio frequency (RF) distortion yielding twenty percent gain in terms of bit error rate (BER) over the shallow RC structure.


2020 ◽  
Vol 27 (3) ◽  
pp. 373-389 ◽  
Author(s):  
Ashesh Chattopadhyay ◽  
Pedram Hassanzadeh ◽  
Devika Subramanian

Abstract. In this paper, the performance of three machine-learning methods for predicting short-term evolution and for reproducing the long-term statistics of a multiscale spatiotemporal Lorenz 96 system is examined. The methods are an echo state network (ESN, which is a type of reservoir computing; hereafter RC–ESN), a deep feed-forward artificial neural network (ANN), and a recurrent neural network (RNN) with long short-term memory (LSTM; hereafter RNN–LSTM). This Lorenz 96 system has three tiers of nonlinearly interacting variables representing slow/large-scale (X), intermediate (Y), and fast/small-scale (Z) processes. For training or testing, only X is available; Y and Z are never known or used. We show that RC–ESN substantially outperforms ANN and RNN–LSTM for short-term predictions, e.g., accurately forecasting the chaotic trajectories for hundreds of numerical solver's time steps equivalent to several Lyapunov timescales. The RNN–LSTM outperforms ANN, and both methods show some prediction skills too. Furthermore, even after losing the trajectory, data predicted by RC–ESN and RNN–LSTM have probability density functions (pdf's) that closely match the true pdf – even at the tails. The pdf of the data predicted using ANN, however, deviates from the true pdf. Implications, caveats, and applications to data-driven and data-assisted surrogate modeling of complex nonlinear dynamical systems, such as weather and climate, are discussed.


2016 ◽  
Vol 22 (2) ◽  
pp. 241-268 ◽  
Author(s):  
Chris Johnson ◽  
Andrew Philippides ◽  
Philip Husbands

Compliant bodies with complex dynamics can be used both to simplify control problems and to lead to adaptive reflexive behavior when engaged with the environment in the sensorimotor loop. By revisiting an experiment introduced by Beer and replacing the continuous-time recurrent neural network therein with reservoir computing networks abstracted from compliant bodies, we demonstrate that adaptive behavior can be produced by an agent in which the body is the main computational locus. We show that bodies with complex dynamics are capable of integrating, storing, and processing information in meaningful and useful ways, and furthermore that with the addition of the simplest of nervous systems such bodies can generate behavior that could equally be described as reflexive or minimally cognitive.


Sign in / Sign up

Export Citation Format

Share Document