scholarly journals Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network

2020 ◽  
Vol 27 (3) ◽  
pp. 373-389 ◽  
Author(s):  
Ashesh Chattopadhyay ◽  
Pedram Hassanzadeh ◽  
Devika Subramanian

Abstract. In this paper, the performance of three machine-learning methods for predicting short-term evolution and for reproducing the long-term statistics of a multiscale spatiotemporal Lorenz 96 system is examined. The methods are an echo state network (ESN, which is a type of reservoir computing; hereafter RC–ESN), a deep feed-forward artificial neural network (ANN), and a recurrent neural network (RNN) with long short-term memory (LSTM; hereafter RNN–LSTM). This Lorenz 96 system has three tiers of nonlinearly interacting variables representing slow/large-scale (X), intermediate (Y), and fast/small-scale (Z) processes. For training or testing, only X is available; Y and Z are never known or used. We show that RC–ESN substantially outperforms ANN and RNN–LSTM for short-term predictions, e.g., accurately forecasting the chaotic trajectories for hundreds of numerical solver's time steps equivalent to several Lyapunov timescales. The RNN–LSTM outperforms ANN, and both methods show some prediction skills too. Furthermore, even after losing the trajectory, data predicted by RC–ESN and RNN–LSTM have probability density functions (pdf's) that closely match the true pdf – even at the tails. The pdf of the data predicted using ANN, however, deviates from the true pdf. Implications, caveats, and applications to data-driven and data-assisted surrogate modeling of complex nonlinear dynamical systems, such as weather and climate, are discussed.

Algorithms ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 203
Author(s):  
Benjamin Plaster ◽  
Gautam Kumar

Modeling brain dynamics to better understand and control complex behaviors underlying various cognitive brain functions have been of interest to engineers, mathematicians and physicists over the last several decades. With the motivation of developing computationally efficient models of brain dynamics to use in designing control-theoretic neurostimulation strategies, we have developed a novel data-driven approach in a long short-term memory (LSTM) neural network architecture to predict the temporal dynamics of complex systems over an extended long time-horizon in future. In contrast to recent LSTM-based dynamical modeling approaches that make use of multi-layer perceptrons or linear combination layers as output layers, our architecture uses a single fully connected output layer and reversed-order sequence-to-sequence mapping to improve short time-horizon prediction accuracy and to make multi-timestep predictions of dynamical behaviors. We demonstrate the efficacy of our approach in reconstructing the regular spiking to bursting dynamics exhibited by an experimentally-validated 9-dimensional Hodgkin-Huxley model of hippocampal CA1 pyramidal neurons. Through simulations, we show that our LSTM neural network can predict the multi-time scale temporal dynamics underlying various spiking patterns with reasonable accuracy. Moreover, our results show that the predictions improve with increasing predictive time-horizon in the multi-timestep deep LSTM neural network.


2020 ◽  
Author(s):  
Frederik Kratzert ◽  
Daniel Klotz ◽  
Günter Klambauer ◽  
Grey Nearing ◽  
Sepp Hochreiter

<p>Simulation accuracy among traditional hydrological models usually degrades significantly when going from single basin to regional scale. Hydrological models perform best when calibrated for specific basins, and do worse when a regional calibration scheme is used. </p><p>One reason for this is that these models do not (have to) learn hydrological processes from data. Rather, they have a predefined model structure and only a handful of parameters adapt to specific basins. This often yields less-than-optimal parameter values when the loss is not determined by a single basin, but by many through regional calibration.</p><p>The opposite is true for data driven approaches where models tend to get better with more and diverse training data. We examine whether this holds true when modeling rainfall-runoff processes with deep learning, or if, like their process-based counterparts, data-driven hydrological models degrade when going from basin to regional scale.</p><p>Recently, Kratzert et al. (2018) showed that the Long Short-Term Memory network (LSTM), a special type of recurrent neural network, achieves comparable performance to the SAC-SMA at basin scale. In follow up work Kratzert et al. (2019a) trained a single LSTM for hundreds of basins in the continental US, which outperformed a set of hydrological models significantly, even compared to basin-calibrated hydrological models. On average, a single LSTM is even better in out-of-sample predictions (ungauged) compared to the SAC-SMA in-sample (gauged) or US National Water Model (Kratzert et al. 2019b).</p><p>LSTM-based approaches usually involve tuning a large number of hyperparameters, such as the number of neurons, number of layers, and learning rate, that are critical for the predictive performance. Therefore, large-scale hyperparameter search has to be performed to obtain a proficient LSTM network.  </p><p>However, in the abovementioned studies, hyperparameter optimization was not conducted at large scale and e.g. in Kratzert et al. (2018) the same network hyperparameters were used in all basins, instead of tuning hyperparameters for each basin separately. It is yet unclear whether LSTMs follow the same trend of traditional hydrological models to degrade performance from basin to regional scale. </p><p>In the current study, we performed a computational expensive, basin-specific hyperparameter search to explore how site-specific LSTMs differ in performance compared to regionally calibrated LSTMs. We compared our results to the mHM and VIC models, once calibrated per-basin and once using an MPR regionalization scheme. These benchmark models were calibrated individual research groups, to eliminate bias in our study. We analyse whether differences in basin-specific vs regional model performance can be linked to basin attributes or data set characteristics.</p><p>References:</p><p>Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018, 2018. </p><p>Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019a. </p><p>Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., & Nearing, G. S.: Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resources Research, 55. https://doi.org/10.1029/2019WR026065, 2019b.</p>


Author(s):  
Benjamin Plaster ◽  
Gautam Kumar

Modeling brain dynamics to better understand and control complex behaviors underlying various cognitive brain functions are of interests to engineers, mathematicians, and physicists from the last several decades. With a motivation of developing computationally efficient models of brain dynamics to use in designing control-theoretic neurostimulation strategies, we have developed a novel data-driven approach in a long short-term memory (LSTM) neural network architecture to predict the temporal dynamics of complex systems over an extended long time-horizon in future. In contrast to recent LSTM-based dynamical modeling approaches that make use of multi-layer perceptrons or linear combination layers as output layers, our architecture uses a single fully connected output layer and reversed-order sequence-to-sequence mapping to improve short time-horizon prediction accuracy and to make multi-timestep predictions of dynamical behaviors. We demonstrate the efficacy of our approach in reconstructing the regular spiking to bursting dynamics exhibited by an experimentally-validated 9-dimensional Hodgkin-Huxley model of hippocampal CA1 pyramidal neurons. Through simulations, we show that our LSTM neural network can predict the multi-time scale temporal dynamics underlying various spiking patterns with reasonable accuracy. Moreover, our results show that the predictions improve with increasing predictive time-horizon in the multi-timestep deep LSTM neural network.


2021 ◽  
Author(s):  
Rafael Bosse Brinhosa ◽  
Marcos A. Michels Schlickmann ◽  
Eduardo da Silva ◽  
Carlos Becker Westphall ◽  
Carla Merkle Westphall

Com o uso de aplicações web em ambientes dinâmicos de computação em nuvem integrados com dispositivos IoT, os ataques de injeção de SQL e de XSS (Cross-Site Scripting) continuam causando problemas para a segurança. A detecção de requisições maliciosas a nível de aplicação representa um desafio na pesquisa, que está evoluindo usando técnicas de Machine Learning e redes neurais. Este trabalho apresenta a comparação entre duas arquiteturas de aprendizado de máquina usadas para detectar requisições web maliciosas: LSTM (Long Short-Term Memory) e CLCNN (Character-level Convolutional Neural Network). Os resultados demonstram que a CLCNN é a mais eficaz em todas as métricas, com uma acurácia de 98,13%, precisão de 99,84%, taxa de detecção em 95,66% e com um F1-score de 97,70%.


2021 ◽  
Vol 7 (2) ◽  
pp. 113-121
Author(s):  
Firman Pradana Rachman

Setiap orang mempunyai pendapat atau opini terhadap suatu produk, tokoh masyarakat, atau pun sebuah kebijakan pemerintah yang tersebar di media sosial. Pengolahan data opini itu di sebut dengan sentiment analysis. Dalam pengolahan data opini yang besar tersebut tidak hanya cukup menggunakan machine learning, namun bisa juga menggunakan deep learning yang di kombinasikan dengan teknik NLP (Natural Languange Processing). Penelitian ini membandingkan beberapa model deep learning seperti CNN (Convolutional Neural Network), RNN (Recurrent Neural Networks), LSTM (Long Short-Term Memory) dan beberapa variannya untuk mengolah data sentiment analysis dari review produk amazon dan yelp.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mustafa Abed ◽  
Monzur Alam Imteaz ◽  
Ali Najah Ahmed ◽  
Yuk Feng Huang

AbstractEvaporation is a key element for water resource management, hydrological modelling, and irrigation system designing. Monthly evaporation (Ep) was projected by deploying three machine learning (ML) models included Extreme Gradient Boosting, ElasticNet Linear Regression, and Long Short-Term Memory; and two empirical techniques namely Stephens-Stewart and Thornthwaite. The aim of this study is to develop a reliable generalised model to predict evaporation throughout Malaysia. In this context, monthly meteorological statistics from two weather stations in Malaysia were utilised for training and testing the models on the basis of climatic aspects such as maximum temperature, mean temperature, minimum temperature, wind speed, relative humidity, and solar radiation for the period of 2000–2019. For every approach, multiple models were formulated by utilising various combinations of input parameters and other model factors. The performance of models was assessed by utilising standard statistical measures. The outcomes indicated that the three machine learning models formulated outclassed empirical models and could considerably enhance the precision of monthly Ep estimate even with the same combinations of inputs. In addition, the performance assessment showed that Long Short-Term Memory Neural Network (LSTM) offered the most precise monthly Ep estimations from all the studied models for both stations. The LSTM-10 model performance measures were (R2 = 0.970, MAE = 0.135, MSE = 0.027, RMSE = 0.166, RAE = 0.173, RSE = 0.029) for Alor Setar and (R2 = 0.986, MAE = 0.058, MSE = 0.005, RMSE = 0.074, RAE = 0.120, RSE = 0.013) for Kota Bharu.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7846
Author(s):  
Hongji Yang ◽  
Jinhui Jiang ◽  
Guoping Chen ◽  
M Shadi Mohamed ◽  
Fan Lu

The determination of structural dynamic characteristics can be challenging, especially for complex cases. This can be a major impediment for dynamic load identification in many engineering applications. Hence, avoiding the need to find numerous solutions for structural dynamic characteristics can significantly simplify dynamic load identification. To achieve this, we rely on machine learning. The recent developments in machine learning have fundamentally changed the way we approach problems in numerous fields. Machine learning models can be more easily established to solve inverse problems compared to standard approaches. Here, we propose a novel method for dynamic load identification, exploiting deep learning. The proposed algorithm is a time-domain solution for beam structures based on the recurrent neural network theory and the long short-term memory. A deep learning model, which contains one bidirectional long short-term memory layer, one long short-term memory layer and two full connection layers, is constructed to identify the typical dynamic loads of a simply supported beam. The dynamic inverse model based on the proposed algorithm is then used to identify a sinusoidal, an impulsive and a random excitation. The accuracy, the robustness and the adaptability of the model are analyzed. Moreover, the effects of different architectures and hyperparameters on the identification results are evaluated. We show that the model can identify multi-points excitations well. Ultimately, the impact of the number and the position of the measuring points is discussed, and it is confirmed that the identification errors are not sensitive to the layout of the measuring points. All the presented results indicate the advantages of the proposed method, which can be beneficial for many applications.


Author(s):  
Benjamin Plaster ◽  
Gautam Kumar

Modeling brain dynamics to better understand and control complex behaviors underlying various cognitive brain functions are of interests to engineers, mathematicians, and physicists from the last several decades. With a motivation of developing computationally efficient models of brain dynamics to use in designing control-theoretic neurostimulation strategies, we have developed a novel data-driven approach in a long short-term memory (LSTM) neural network architecture to predict the temporal dynamics of complex systems over an extended long time-horizon in future. In contrast to recent LSTM-based dynamical modeling approaches that make use of multi-layer perceptrons or linear combination layers as output layers, our architecture uses a single fully connected output layer and reversed-order sequence-to-sequence mapping to improve short time-horizon prediction accuracy and to make multi-timestep predictions of dynamical behaviors. We demonstrate the efficacy of our approach in reconstructing the regular spiking to bursting dynamics exhibited by an experimentally-validated 9-dimensional Hodgkin-Huxley model of hippocampal CA1 pyramidal neurons. Through simulations, we show that our LSTM neural network can predict the multi-time scale temporal dynamics underlying various spiking patterns with reasonable accuracy. Moreover, our results show that the predictions improve with increasing predictive time-horizon in the multi-timestep deep LSTM neural network.


Sign in / Sign up

Export Citation Format

Share Document