scholarly journals Planning for infectious disease outbreaks: A geographic disease spread, clinic location, and resource allocation simulation

Author(s):  
Sean Carr ◽  
Stephen Roberts
2019 ◽  
Vol 374 (1776) ◽  
pp. 20180283 ◽  
Author(s):  
Devon A. Gaydos ◽  
Anna Petrasova ◽  
Richard C. Cobb ◽  
Ross K. Meentemeyer

Epidemiological models are powerful tools for evaluating scenarios and visualizing patterns of disease spread, especially when comparing intervention strategies. However, the technical skill required to synthesize and operate computational models frequently renders them beyond the command of the stakeholders who are most impacted by the results. Participatory modelling (PM) strives to restructure the power relationship between modellers and the stakeholders who rely on model insights by involving these stakeholders directly in model development and application; yet, a systematic literature review indicates little adoption of these techniques in epidemiology, especially plant epidemiology. We investigate the potential for PM to integrate stakeholder and researcher knowledge, using Phytophthora ramorum and the resulting sudden oak death disease as a case study. Recent introduction of a novel strain (European 1 or EU1) in southwestern Oregon has prompted significant concern and presents an opportunity for coordinated management to minimize regional pathogen impacts. Using a PM framework, we worked with local stakeholders to develop an interactive forecasting tool for evaluating landscape-scale control strategies. We find that model co-development has great potential to empower stakeholders in the design, development and application of epidemiological models for disease control. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’. This theme issue is linked with the earlier issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’.


2019 ◽  
Vol 147 ◽  
Author(s):  
F. Mboussou ◽  
P. Ndumbi ◽  
R. Ngom ◽  
Z. Kassamali ◽  
O. Ogundiran ◽  
...  

Abstract The WHO African region is characterised by the largest infectious disease burden in the world. We conducted a retrospective descriptive analysis using records of all infectious disease outbreaks formally reported to the WHO in 2018 by Member States of the African region. We analysed the spatio-temporal distribution, the notification delay as well as the morbidity and mortality associated with these outbreaks. In 2018, 96 new disease outbreaks were reported across 36 of the 47 Member States. The most commonly reported disease outbreak was cholera which accounted for 20.8% (n = 20) of all events, followed by measles (n = 11, 11.5%) and Yellow fever (n = 7, 7.3%). About a quarter of the outbreaks (n = 23) were reported following signals detected through media monitoring conducted at the WHO regional office for Africa. The median delay between the disease onset and WHO notification was 16 days (range: 0–184). A total of 107 167 people were directly affected including 1221 deaths (mean case fatality ratio (CFR): 1.14% (95% confidence interval (CI) 1.07%–1.20%)). The highest CFR was observed for diseases targeted for eradication or elimination: 3.45% (95% CI 0.89%–10.45%). The African region remains prone to outbreaks of infectious diseases. It is therefore critical that Member States improve their capacities to rapidly detect, report and respond to public health events.


Author(s):  
Steffen Unkel ◽  
C. Paddy Farrington ◽  
Paul H. Garthwaite ◽  
Chris Robertson ◽  
Nick Andrews

2017 ◽  
Vol 22 (26) ◽  
Author(s):  
Loes Soetens ◽  
Susan Hahné ◽  
Jacco Wallinga

Geographical mapping of infectious diseases is an important tool for detecting and characterising outbreaks. Two common mapping methods, dot maps and incidence maps, have important shortcomings. The former does not represent population density and can compromise case privacy, and the latter relies on pre-defined administrative boundaries. We propose a method that overcomes these limitations: dot map cartograms. These create a point pattern of cases while reshaping spatial units, such that spatial area becomes proportional to population size. We compared these dot map cartograms with standard dot maps and incidence maps on four criteria, using two example datasets. Dot map cartograms were able to illustrate both incidence and absolute numbers of cases (criterion 1): they revealed potential source locations (Q fever, the Netherlands) and clusters with high incidence (pertussis, Germany). Unlike incidence maps, they were insensitive to choices regarding spatial scale (criterion 2). Dot map cartograms ensured the privacy of cases (criterion 3) by spatial distortion; however, this occurred at the expense of recognition of locations (criterion 4). We demonstrate that dot map cartograms are a valuable method for detection and visualisation of infectious disease outbreaks, which facilitates informed and appropriate actions by public health professionals, to investigate and control outbreaks.


2007 ◽  
Vol 13 (10) ◽  
pp. 1548-1555 ◽  
Author(s):  
Gérard Krause ◽  
Doris Altmann ◽  
Daniel Faensen ◽  
Klaudia Porten ◽  
Justus Benzler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document