Passive seismic data primary estimation and noise removal via focal‐denoising closed‐loop surface‐related multiple elimination based on 3D L1‐norm sparse inversion

2020 ◽  
Vol 69 (1) ◽  
pp. 122-138
Author(s):  
Tiexing Wang ◽  
Deli Wang ◽  
Jing Sun ◽  
Bin Hu
Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. V145-V152 ◽  
Author(s):  
Ketil Hokstad ◽  
Roger Sollie

The basic theory of surface-related multiple elimination (SRME) can be formulated easily for 3D seismic data. However, because standard 3D seismic acquisition geometries violate the requirements of the method, the practical implementation for 3D seismic data is far from trivial. A major problem is to perform the crossline-summation step of 3D SRME, which becomes aliased because of the large separation between receiver cables and between source lines. A solution to this problem, based on hyperbolic sparse inversion, has been presented previously. This method is an alternative to extensive interpolation and extrapolation of data. The hyperbolic sparse inversion is formulated in the time domain and leads to few, but large, systems of equations. In this paper, we propose an alternative formulation using parabolic sparse inversion based on an efficient weighted minimum-norm solution that can be computed in the angular frequency domain. The main advantage of the new method is numerical efficiency because solving many small systems of equations often is faster than solving a few big ones. The method is demonstrated on 3D synthetic and real data with reflected and diffracted multiples. Numerical results show that the proposed method gives improved results compared to 2D SRME. For typical seismic acquisition geometries, the numerical cost running on 50 processors is [Formula: see text] per output trace. This makes production-scale processing of 3D seismic data feasible on current Linux clusters.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. T133-T141 ◽  
Author(s):  
Jan-Willem Vrolijk ◽  
Eric Verschuur ◽  
Gabriel Lopez

Accurate surface-related multiple removal is an important step in conventional seismic processing, and more recently, primaries and surface multiples are separated such that each of them is available for imaging algorithms. Current developments in the field of surface-multiple removal aim at estimating primaries in a large-scale inversion process. Using such a so-called closed-loop process, in each iteration primaries and surface multiples will be updated until they fit the measured data. The advantage of redefining surface-multiple removal as a closed-loop process is that certain preprocessing steps can be included, which can lead to an improved multiple removal. In principle, the surface-related multiple elimination process requires deghosted data as input; thus, the source and receiver ghost must be removed. We have focused on the receiver ghost effect and assume that the source is towed close to the sea surface, such that the source ghost effect is well-represented by a dipole source. The receiver ghost effect is integrated within the closed-loop primary estimation process. Thus, primaries are directly estimated without the receiver ghost effect. After receiver deghosting, the upgoing wavefield is defined at zero depth, which is the surface. We have successfully validated our method on a 2D simulated data and on a 2D subset from 3D broadband field data with a slanted cable.


2017 ◽  
Vol 65 (6) ◽  
pp. 1145-1152 ◽  
Author(s):  
Tiexing Wang ◽  
Deli Wang ◽  
Jing Sun ◽  
Bin Hu ◽  
Chengming Liu
Keyword(s):  
L1 Norm ◽  

Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. SA61-SA69 ◽  
Author(s):  
G. J. van Groenestijn ◽  
D. J. Verschuur

For passive seismic data, surface multiples are used to obtain an estimate of the subsurface responses, usually by a crosscorrelation process. This crosscorrelation process relies on the assumption that the surface has been uniformly illuminated by subsurface sources in terms of incident angles and strengths. If this is not the case, the crosscorrelation process cannot give a true amplitude estimation of the subsurface response. Furthermore, cross terms in the crosscorrelation result are not related to actual subsurface inhomogeneities. We have developed a method that can obtain true amplitude subsurface responses without a uniform surface-illumination assumption. Our methodology goes beyond the crosscorrelation process and estimates primaries only from the surface-related multiples in the available signal. We use the recently introduced estimation of primaries by sparse inversion (EPSI) methodology, in which the primary impulse responses are considered to be the unknowns in a large-scale inversion process. With some modifications, the EPSI method can be used for passive seismic data. The output of this process is primary impulse responses with point sources and receivers at the surface, which can be used directly in traditional imaging schemes. The methodology was tested on 2D synthetic data.


Sign in / Sign up

Export Citation Format

Share Document