3D surface-related multiple elimination using parabolic sparse inversion

Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. V145-V152 ◽  
Author(s):  
Ketil Hokstad ◽  
Roger Sollie

The basic theory of surface-related multiple elimination (SRME) can be formulated easily for 3D seismic data. However, because standard 3D seismic acquisition geometries violate the requirements of the method, the practical implementation for 3D seismic data is far from trivial. A major problem is to perform the crossline-summation step of 3D SRME, which becomes aliased because of the large separation between receiver cables and between source lines. A solution to this problem, based on hyperbolic sparse inversion, has been presented previously. This method is an alternative to extensive interpolation and extrapolation of data. The hyperbolic sparse inversion is formulated in the time domain and leads to few, but large, systems of equations. In this paper, we propose an alternative formulation using parabolic sparse inversion based on an efficient weighted minimum-norm solution that can be computed in the angular frequency domain. The main advantage of the new method is numerical efficiency because solving many small systems of equations often is faster than solving a few big ones. The method is demonstrated on 3D synthetic and real data with reflected and diffracted multiples. Numerical results show that the proposed method gives improved results compared to 2D SRME. For typical seismic acquisition geometries, the numerical cost running on 50 processors is [Formula: see text] per output trace. This makes production-scale processing of 3D seismic data feasible on current Linux clusters.

2015 ◽  
Vol 34 (4) ◽  
pp. 380-388 ◽  
Author(s):  
Andrew W. Hill ◽  
Adeyemi Arogunmati ◽  
Gareth A. Wood ◽  
Duncan Attoe ◽  
Mike Fiske ◽  
...  

2020 ◽  
Vol 39 (8) ◽  
pp. 566-573
Author(s):  
Aqilah Amir Jamalullail ◽  
Ong Swee Keong ◽  
Nik Ruzaimi Akmal Nik Ruhadi ◽  
Tengku Mohd Syazwan Tengku Hassan ◽  
Detchai Ittharat ◽  
...  

In 1994, two exploration wells were drilled consecutively to explore for gas prospectivity in Lang Lebah, a Miocene carbonate buildup in the geologic province of Central Luconia located in the Sarawak Basin in Malaysia. High overpressure and operational problems prevented both wells from fully evaluating the target. Postdrill analysis concluded that Lang Lebah has limited potential due to poor reservoir quality, small gas column, and challenging drilling conditions. For these reasons, it was left dormant for 25 years. In 2016, new 3D broadband seismic acquisition and megamerge reprocessing of 3D seismic data sets followed by an integrated application of multidisciplinary workflows successfully derisked key petroleum system elements of the Lang Lebah structure, yielding a more optimistic view of its potential. A new well was justified at Lang Lebah and resulted in one of the major gas discoveries of 2019.


2012 ◽  
Vol 2012 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Peter Kovesi ◽  
Ben Richardson ◽  
Eun-Jung Holden ◽  
Jeffrey Shragge

Sign in / Sign up

Export Citation Format

Share Document