scholarly journals Can above-ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?

2016 ◽  
Vol 53 (4) ◽  
pp. 1186-1194 ◽  
Author(s):  
Stijn van Gils ◽  
Wim H. van der Putten ◽  
David Kleijn
Soil Systems ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 32
Author(s):  
Christel Baum ◽  
Martin Barth ◽  
Kathrin Henkel ◽  
Meike Siebers ◽  
Kai-Uwe Eckhardt ◽  
...  

Short rotation coppices (SRC) with poplar on arable soils constitute no-till management in combination with a changed litter quality compared to annual crops. Both tillage and litter quality impact soil organic matter (SOM) composition, but little is known on the sustainability of this impact at the molecular level. We compared the microbial colonization and SOM quantity and quality of a young (4 years), old (17 years) and a former SRC with hybrid poplar (Populus maximoviczii × Populus nigra cv. Max) to adjacent arable sites with annual crops or grass. Total fungal and arbsucular mycorrhizal fungal phospholipid fatty acid (PLFA) markers were increased under no-till treatments with permanent crops (SRC and grass) compared to tilled cereals. Enrichments in fungal biomass coincided with C accumulation close to the soil surface (0–5 cm) but was abolished under former SRC after return to annual tillage. This management change altered the spatial distribution but not the accumulation of SOM within the topsoil (0–30 cm). However, lasting qualitative changes in SOM with increased proportions of lignin, lipids and sterols were found under current and former SRC. Increased colonization by arbuscular mycorrhizal fungi was correlated with increased invertase activity (R = 0.64; p < 0.05), carbohydrate consumption and a corresponding accumulation of lignins and lipids in the SOM. This link indicates a regulatory impact of mycorrhizal fungi on soil C dynamics by changing the quality of SOM. Increased stability of SOM to microbial degradation by higher portions of lipids and sterols in the SOM were assumed to be a sustainable effect of poplar growth at Eutric Cambisols.


2021 ◽  
pp. 91-126
Author(s):  
Amir Kassam ◽  
Emilio Gonzalez-Sanchez ◽  
Rosa M. Carbonell-Bojollo ◽  
Theodor Friedrich ◽  
Rolf Derpsch

Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1054 ◽  
Author(s):  
Yining Niu ◽  
Zhuzhu Luo ◽  
Liqun Cai ◽  
Jeffrey A. Coulter ◽  
Yaoquan Zhang ◽  
...  

Cropping systems are structured to maximize crop yields and increase sustainability in agricultural production. A field study was conducted to investigate different long-term cropping systems on soil organic matter and microbial communities. The cropping systems studied were: (i) a 14-year continuous alfalfa (Medicago sativa L.) (CA), (ii) a 9-year alfalfa removed and rotated with 4–5 years continuous annual crops (spring wheat (Triticum aestivum L.), maize (Zea mays L.), potato (Solanum tuberosum L.), and millet (Panicum miliaceum L.)), and (iii) a 5-year field fallow after alfalfa. Results showed that continued annual crops decreased total organic C and labile organic C by 10 to 20% and 17 to 34% in the topsoil (0–30 cm), and by 15 to 35% and 20 to 46% in the subsoil (30–60 cm), respectively, compared with CA. Similar trends were found in soil total N concentration, which decreased by 7 to 20% in the topsoil. Highest microbial biomass C was found in CA. Shannon-Wiener diversity and substrate richness of soil microbes measured by Biolog EcoPlates was significantly affected by cropping system with CA exhibiting a higher degree of soil microbial functional diversity in the topsoil, while the lowest values were found in the alfalfa-potato system. The higher soil organic matter content and functional diversity of soil microbe in CA indicates that soil nutrition and microbial activity did not limit alfalfa development and growth in the dryland area. The lower microbial activity and functional diversity observed in the potato field indicates the importance of crop selection in cropping systems.


1962 ◽  
Vol 54 (5) ◽  
pp. 470-470
Author(s):  
T. M. McCalla

Sign in / Sign up

Export Citation Format

Share Document