Forest thinning in the seaward fringe speeds up surface elevation increment and carbon accumulation in managed mangrove forests

Author(s):  
Luzhen Chen ◽  
Qiulian Lin ◽  
Ken W. Krauss ◽  
Yun Zhang ◽  
Nicole Cormier ◽  
...  
2001 ◽  
Vol 179 (1-2) ◽  
pp. 85-103 ◽  
Author(s):  
D.M Alongi ◽  
G Wattayakorn ◽  
J Pfitzner ◽  
F Tirendi ◽  
I Zagorskis ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Norhafizi Mohamad ◽  
Anuar Ahmad ◽  
Mohd Faisal Abdul Khanan ◽  
Ami Hassan Md Din

Estimating surface elevation changes in mangrove forests requires a technique to filter the mangrove canopy and quantify the changes underneath. Hence, this study estimates surface elevation changes underneath the mangrove canopy through vegetation filtering and Difference of DEM (DoD) techniques using two epochs of unmanned aerial vehicle (UAV) data carried out during 2016 and 2017. A novel filtering algorithm named Surface estimation from Nearest Elevation and Repetitive Lowering (SNERL) is used to estimate the elevation height underneath the mangrove canopy. Consequently, DoD technique is used to quantify the elevation change rates at the ground surface, which comprise erosion, accretion, and sedimentation. The significant findings showed that region of interest (ROI) 5 experienced the highest volumetric accretion (surface raising) at 0.566 cm3. The most increased erosion (surface lowering) was identified at ROI 8 at −2.469 cm3. In contrast, for vertical change average rates, ROI 6 experienced the highest vertical accretion (surface raising) at 1.281 m. In comparison, the most increased vertical erosion (surface lowering) was spotted at ROI 3 at −0.568 m. The change detection map and the rates of surface elevation changes at Kilim River enabled authorities to understand the situation thoroughly and indicate the future situation, including its interaction with sea-level rise impacts.


2018 ◽  
Author(s):  
Daniel Murdiyarso ◽  
Bayu Budi Hanggara ◽  
Ali Arman Lubis

AbstractMangrove ecosystems are often referred to as “land builders” because of their ability to trap sediments transported from the uplands as well as from the oceans. The sedimentation process in mangrove areas is influenced by hydro-geomorphic settings that represent the tidal range and coastal geological formation. We estimated the sedimentation rate in North Sumatran mangrove forests using the 210Pb radionuclide technique, also known as the constant rate supply method, and found that mudflats, fringes, and interior mangroves accreted 4.3 ± 0.2 mm yr−1, 5.6 ± 0.3 mm yr1, and 3.7 ± 0.2 mm yr−1, respectively. Depending on the subsurface changes, these rates could potentially keep pace with global sea level rise of 2.6−3.2 mm yr−1, except the interior mangrove they would also be able to cope with regional sea-level rise of 4.2 ± 0.4 mm yr−1. The mean soil carbon accumulation rates in the mudflats, fringes, and interior areas were 40.1 ± 6.9 g C m−2yr−1, 50.1 ± 8.8 g C m−2yr−1, and 47.7 ± 12.5 g C m−2yr−1, respectively, much lower than the published global average of 226 ± 39 g C m−2yr−1. We also found that based on the excess of radioactive elements derived from atomic bomb fallout, the sediment in the mudflat area was deposited since over 28 years ago, and is much younger than the sediment deposited in the interior and fringe areas that are 43 years 54 years old, respectively.


2016 ◽  
Vol 24 (2) ◽  
pp. 245-261 ◽  
Author(s):  
Richard A. MacKenzie ◽  
Patra B. Foulk ◽  
J. Val Klump ◽  
Kimberly Weckerly ◽  
Joko Purbospito ◽  
...  

Sci ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 51
Author(s):  
Edwin J. Bomer ◽  
Carol A. Wilson ◽  
Tracy Elsey-Quirk

The conservation of coastal wetland ecosystems, like mangrove forests and salt marshes, represents a critical strategy for mitigating atmospheric emissions and climate change in the 21st century. Yet the existence of these environments is threatened by human-induced disturbances, namely deforestation and accelerated sea-level rise. Coastal systems maintain surface elevation in response to sea-level rise through a combination of physical and biological processes both above and below the ground surface. The quantification and relative contribution of belowground process controls (e.g., seasonal water content, organic matter decomposition) on surface elevation change is largely unexplored but crucial for informing coastal ecosystem sustainability. To address this knowledge deficit, we integrated measurements of surface elevation change of the live root zone (0.5 to 1 m depth) with geotechnical data from co-located sediment cores in the Sundarbans mangrove forest (SMF) of southwest Bangladesh. Core data reveal that the primary belowground controls on surface elevation change include seasonal fluctuations in pore-water content and the relative abundance of fine-grained sediments capable of volumetric expansion and contraction, supporting an elevation gain of ~2.42 ± 0.26 cm yr−1. In contrast to many mangrove environments, the soils of the SMF contain little organic matter and are dominantly composed (>90%) of inorganic clastic sediments. The mineral-rich soil texture likely leads to less compaction-induced subsidence as compared to organic-rich substrates and facilitates surface equilibrium in response to sea level rise. Despite a relatively high soil bulk density, soil carbon (C) density of the SMF is very low owing to the dearth of preserved organic content. However, rates of C accumulation are balanced out by locally high accretion rates, rendering the SMF a greater sink of terrestrial C than the worldwide mangrove average. The findings of this study demonstrate that C accumulation in the SMF, and possibly other alluvial mangrove forests, is highly dependent on the continued delivery of sediment to the mangrove platform and associated settings.


Wetlands ◽  
2020 ◽  
Vol 40 (5) ◽  
pp. 1047-1059
Author(s):  
Daniel A. Saavedra-Hortua ◽  
Daniel A. Friess ◽  
Martin Zimmer ◽  
Lucy Gwen Gillis

Abstract Mangrove forests are among the world’s most productive ecosystems and provide essential ecosystem services such as global climate regulation through the sequestration of carbon. A detailed understanding of the influence of drivers of ecosystem connectivity (in terms of exchange of suspended particulate organic matter), such as geomorphic setting and carbon stocks, among coastal ecosystems is important for being able to depict carbon dynamics. Here, we compared carbon stocks, CO2 fluxes at the sediment-air interface, concentrations of dissolved organic carbon and suspended particulate organic carbon across a mangrove-seagrass-tidal flat seascape. Using stable isotope signatures of carbon and nitrogen in combination with MixSIAR models, we evaluated the contribution of organic matter from different sources among the different seascape components. Generally, carbon concentration was higher as dissolved organic carbon than as suspended particulate matter. Geomorphic settings of the different locations reflected the contributions to particulate organic matter of the primary producers. For example, the biggest contributors in the riverine location were mangrove trees and terrestrial plants, while in fringing locations oceanic and macroalgal sources dominated. Anthropogenic induced changes at the coastal level (i.e. reduction of mangrove forests area) may affect carbon accumulation dynamics in adjacent coastal ecosystems.


Author(s):  
Wei Ma ◽  
Mao Wang ◽  
Haifeng Fu ◽  
Chaoyi Tang ◽  
Wenqing Wang

Molluscs are an important component of the mangrove ecosystem, and the vertical distributions of molluscan species in this ecosystem are primarily dictated by tidal inundation. Thus, sea-level rise (SLR) may have profound effects on mangrove mollusc communities. Here, we used two dynamic empirical models based on measurements of surface elevation change, sediment accretion and zonation patterns of molluscs to predict changes in molluscan spatial distributions in response to different sea-level rise rates in the mangrove forests of Zhenzhu Bay (Guangxi, China). The change in surface elevation was 4.76–9.61 mm a during the study period (2016–2020), and the magnitude of surface-elevation change decreased exponentially as original surface elevation increased. Based on our model results, we predicted that mangrove molluscs might successfully adapt to a low rate of SLR (marker-horizon model: 2–4.57 mm a; plate model: 2–5.20 mm a) by 2100, with molluscs moving seaward and those in the lower intertidal zones expanding into newly available zones. However, as SLR rate increased (marker-horizon model: 4.57–8.14 mm a; plate model: 5.20–6.88 mm a), our models predicted that surface elevations would decrease beginning in the high intertidal zones and gradually spreading to the low intertidal zones. Finally, at high rates of SLR (marker-horizon model: 8.14–16.00 mm a; plate model: 6.88–16.00 mm a), surface elevations were predicted to decrease across the elevation gradient, with molluscs moving landward and species in higher intertidal zones would be blocked by landward barriers. Tidal inundation and the consequent increase in interspecific competition and predation pressure were predicted to threaten the survival of many molluscan groups in higher intertidal zones, especially species at the landward edge of the mangroves. Thus, future efforts to conserve mangrove floral and faunal diversity should prioritize species restricted to landward mangrove areas.


Sign in / Sign up

Export Citation Format

Share Document