scholarly journals Sources of Particulate Organic Matter across Mangrove Forests and Adjacent Ecosystems in Different Geomorphic Settings

Wetlands ◽  
2020 ◽  
Vol 40 (5) ◽  
pp. 1047-1059
Author(s):  
Daniel A. Saavedra-Hortua ◽  
Daniel A. Friess ◽  
Martin Zimmer ◽  
Lucy Gwen Gillis

Abstract Mangrove forests are among the world’s most productive ecosystems and provide essential ecosystem services such as global climate regulation through the sequestration of carbon. A detailed understanding of the influence of drivers of ecosystem connectivity (in terms of exchange of suspended particulate organic matter), such as geomorphic setting and carbon stocks, among coastal ecosystems is important for being able to depict carbon dynamics. Here, we compared carbon stocks, CO2 fluxes at the sediment-air interface, concentrations of dissolved organic carbon and suspended particulate organic carbon across a mangrove-seagrass-tidal flat seascape. Using stable isotope signatures of carbon and nitrogen in combination with MixSIAR models, we evaluated the contribution of organic matter from different sources among the different seascape components. Generally, carbon concentration was higher as dissolved organic carbon than as suspended particulate matter. Geomorphic settings of the different locations reflected the contributions to particulate organic matter of the primary producers. For example, the biggest contributors in the riverine location were mangrove trees and terrestrial plants, while in fringing locations oceanic and macroalgal sources dominated. Anthropogenic induced changes at the coastal level (i.e. reduction of mangrove forests area) may affect carbon accumulation dynamics in adjacent coastal ecosystems.

2015 ◽  
Vol 12 (13) ◽  
pp. 10545-10578 ◽  
Author(s):  
A. L. Zuijdgeest ◽  
R. Zurbrügg ◽  
N. Blank ◽  
R. Fulcri ◽  
D. B. Senn ◽  
...  

Abstract. Floodplains are important biogeochemical reactors during fluvial transport of carbon and nutrient species towards the oceans. In the tropics and subtropics pronounced rainfall seasonality results in highly dynamic floodplain biogeochemistry. Massive construction of hydropower dams, however, has significantly altered the hydrography and chemical characteristics of many (sub)tropical rivers. In this study, we compare organic matter and nutrient biogeochemistry of two large, contrasting floodplains in the Zambezi River Basin in Southern Africa, the Barotse Plains and the Kafue Flats. Both systems are of comparable size, but differ in anthropogenic influence: while the Barotse Plains are still relatively pristine, the Kafue Flats are bordered by two hydropower dams. While the Barotse Plains retain particles during the wet season, annual yields of particulate organic carbon and nitrogen are higher than previously reported for the Zambezi and other tropical rivers. Enhanced wet-season runoff adds soil-derived dissolved organic carbon and nitrogen to the Zambezi River, with a corresponding increase in the Barotse Plains. Soil-derived organic matter dominates the particulate phase year-round in the Barotse Plains, and a varying influence of C3- and C4-plant vegetation can be observed throughout the year. In contrast to the Barotse Plains, net export of particulate matter from the Kafue Flats has been observed during the wet season, but over an annual cycle, the Kafue Flats are effectively accumulating dissolved carbon and nutrients. In the Kafue Flats, the runoff-induced increase in dissolved organic carbon and nitrogen concentrations is delayed by the upstream dam operation. The dam reservoir also causes a shift in the source of the particulate organic matter – from soil-derived during the dry season to aquatically produced in the wet season – in the downstream Kafue Flats. Spatial zonation in vegetation and temporal flooding dynamics in the Kafue Flats result in mostly C3-derived particulate organic matter during wet season, and a dominance of C4-derived material during dry season. This pattern results from dam-induced changes in vegetation, as dam construction along the Kafue River has led to encroachment of woody plant species onto the Kafue Flats. The two systems exhibit different flooding dynamics, with a~larger contribution of floodplain-derived water in the Kafue Flats and a stronger peak flow in the Barotse Plains. Differences in the biogeochemistry of the two systems that can be linked to the dams are the timing of the runoff-driven dissolved organic carbon and nitrogen pulses in the wet season and the origin and inputs of particulate organic matter. This study reveals clear effects of dam construction on organic matter and nutrient dynamics on the downstream floodplain. Man-made reservoirs alter the origin of organic matter, and change the timing of precipitation-driven carbon and nitrogen pulses. Environmental assessments of dam impacts should therefore consider changes in water quality.


2020 ◽  
Vol 644 ◽  
pp. 91-103
Author(s):  
D Bearham ◽  
MA Vanderklift ◽  
RA Downie ◽  
DP Thomson ◽  
LA Clementson

Benthic suspension feeders, such as bivalves, potentially have several different food sources, including plankton and resuspended detritus of benthic origin. We hypothesised that suspension feeders are likely to feed on detritus if it is present. This inference would be further strengthened if there was a correlation between δ13C of suspension feeder tissue and δ13C of particulate organic matter (POM). Since detritus is characterised by high particulate organic matter (POC):chl a ratios, we would also predict a positive correlation between POM δ13C and POC:chl a. We hypothesised that increasing depth and greater distance from shore would produce a greater nutritional reliance by experimentally transplanted blue mussels Mytilus edulis on plankton rather than macrophyte-derived detritus. After deployments of 3 mo duration in 2 different years at depths from 3 to 40 m, M. edulis sizes were positively correlated with POM concentrations. POC:chl a ratios and δ13C of POM and M. edulis gill tissue decreased with increasing depth (and greater distance from shore). δ13C of POM was correlated with δ13C of M. edulis. Our results suggest that detritus comprised a large proportion of POM at shallow depths (<15 m), that M. edulis ingested and assimilated carbon in proportion to its availability in POM, and that growth of M. edulis was higher where detritus was present and POM concentrations were higher.


2020 ◽  
Vol 55 (2) ◽  
pp. 184-197
Author(s):  
Saeideh Mirzaei ◽  
Beata Gorczyca

Abstract In this study, diffused aeration was applied to remove trihalomethane (THM) compounds from chlorinated, treated water containing high dissolved organic carbon (DOC) of 6.8 ± 1.2 mg/L. Increasing air-to-water volumetric ratio (rA/W) from 16 to 39 enhanced total THM (TTHM) removal from 60 to 70% at 20 °C and from 30 to 50% at 4 °C. Although bromodichloromethane has lower Henry's law constant than chloroform (CF), it was removed by a higher degree than CF in some aeration trials. Albeit obtaining high removals in aeration, TTHM reformed, and their concentration surpassed the Canadian guideline of 100 ppb in about 24 hours at 20 °C and 40 hours at 10 °C in all attempted air-to-water ratios. The water age in the system investigated in this study varied from 48 hours in midpoint chlorine boosting stations to 336 hours in the nearest endpoint. This study showed that THM removal by aeration is not a viable solution to control the concentration of these disinfection by-products in high-DOC treated water and in distribution systems where water age exceeds 24 hours; unless, it is going to be installed at the distribution endpoints.


2008 ◽  
Vol 5 (2) ◽  
pp. 281-298 ◽  
Author(s):  
P. Raimbault ◽  
N. Garcia ◽  
F. Cerutti

Abstract. During the BIOSOPE cruise the RV Atalante was dedicated to study the biogeochemical properties in the South Pacific between the Marquesas Islands (141° W–8° S) and the Chilean upwelling (73° W–34° S). Over the 8000 km covered by the cruise, several different trophic situations were encountered, in particular strong oligotrophic conditions in the South Pacific Gyre (SPG, between 123° W and 101° W). In this isolated region, nitrate was undetectable between the surface and 160–180 m and only trace quantities (<20 nmoles l−1) of regenerated nitrogen (nitrite and ammonium) were detected, even in the subsurface maximum. Integrated nitrate over the photic layer, which reached 165 m, was close to zero. Despite this severe nitrogen-depletion, phosphate was always present in significant concentrations (≈0.1 μmoles l−1), while silicic acid was maintained at low but classical oceanic levels (≈1 μmoles l−1). In contrast, the Marquesas region (MAR) to the west and Chilean upwelling (UPW) to the east were characterized by high nutrient concentrations, one hundred to one thousand fold higher than in the SPG. The distribution of surface chlorophyll reflected the nitrate gradient, the lowest concentrations (0.023 nmoles l−1) being measured at the centre of the SPG, where integrated value throughout the photic layer was very low (≈ 10 mg m−2). However, due to the relatively high concentrations of chlorophyll-a encountered in the DCM (0.2 μg l−1), chlorophyll-a concentrations throughout the photic layer were less variable than nitrate concentrations (by a factor 2 to 5). In contrast to chlorophyll-a, integrated particulate organic matter (POM) remained more or less constant along the study area (500 mmoles m−2, 60 mmoles m−2 and 3.5 mmoles m−2 for particulate organic carbon, particulate organic nitrogen and particulate organic phosphorus, respectively), with the exception of the upwelling, where values were two fold higher. The residence time of particulate carbon in the surface water was only 4–5 days in the upwelling, but up to 30 days in the SPG, where light isotopic δ15N signal noted in the suspended POM suggests that N2-fixation provides a dominant supply of nitrogen to phytoplankton. The most striking feature was the large accumulation of dissolved organic matter (DOM) in the SPG compared to the surrounding waters, in particular dissolved organic carbon (DOC) where concentrations were at levels rarely measured in oceanic waters (>100 μmoles l−1). Due to this large pool of DOM in the SPG photic layer, integrated values followed a converse geographical pattern to that of inorganic nutrients with a large accumulation in the centre of the SPG. Whereas suspended particulate matter in the mixed layer had a C/N ratio largely conforming to the Redfield stochiometry (C/N≈6.6), marked deviations were observed in this excess DOM (C/N≈16 to 23). The marked geographical trend suggests that a net in situ source exists, mainly due to biological processes. Thus, in spite of strong nitrate-depletion leading to low chlorophyll biomass, the closed ecosystem of the SPG can accumulate large amounts of C-rich dissolved organic matter. The implications of this finding are examined, the conclusion being that, due to weak lateral advection, the biologically produced dissolved organic carbon can be accumulated and stored in the photic layer for very long periods. In spite of the lack of seasonal vertical mixing, a significant part of new production (up to 34%), which was mainly supported by dinitrogen fixation, can be exported to deep waters by turbulent diffusion in terms of DOC. The diffusive rate estimated in the SPG (134 μmolesC m−2 d−1), was quite equivalent to the particles flux measured by sediments traps.


2008 ◽  
Vol 65 (3) ◽  
pp. 543-548 ◽  
Author(s):  
Yves T Prairie

In this perspective article, I argue that dissolved organic carbon occupies a central role in the functioning of lake ecosystems, comparable in importance to that played by nutrients. Because lakes receive so much dissolved organic carbon from the terrestrial landscape, its accumulation in water bodies usually represents the largest pool of lacustrine organic matter within the water column. The transformation of even a small fraction of this external carbon by the microbial community can alter significantly the metabolic balance of lake ecosystems, simultaneously releasing carbon dioxide to the atmosphere and burying organic carbon in lake sediments. At the landscape level, even if they occupy a small fraction of the landscape, lakes play a surprisingly important role in the regional carbon budget, particularly when considered at the appropriate temporal scale.


Sign in / Sign up

Export Citation Format

Share Document