High haplotype diversity with fine‐scale structure in a recently established population of an endangered orchid

2020 ◽  
Vol 35 (3) ◽  
pp. 224-232
Author(s):  
Karl J. Duffy ◽  
Donata Cafasso ◽  
Ming‐Xun Ren ◽  
Salvatore Cozzolino
Heredity ◽  
2015 ◽  
Vol 116 (1) ◽  
pp. 124-124 ◽  
Author(s):  
J K Janes ◽  
A D Roe ◽  
A V Rice ◽  
J C Gorrell ◽  
D W Coltman ◽  
...  

2018 ◽  
Vol 3 (4) ◽  
pp. 127 ◽  
Author(s):  
Eniola Abe ◽  
Yun-Hai Guo ◽  
Haimo Shen ◽  
Masceline Mutsaka-Makuvaza ◽  
Mohamed Habib ◽  
...  

The transmission of some schistosome parasites is dependent on the planorbid snail hosts. Bulinus truncatus is important in urinary schistosomiasis epidemiology in Africa. Hence, there is a need to define the snails’ phylogeography. This study assessed the population genetic structure of B. truncatus from Giza and Sharkia (Egypt), Barakat (Sudan) and Madziwa, Shamva District (Zimbabwe) using mitochondrial cytochrome oxidase subunit 1 gene (COI) and internal transcribed spacer 1 (ITS 1) markers. COI was sequenced from 94 B. truncatus samples including 38 (Egypt), 36 (Sudan) and 20 (Zimbabwe). However, only 51 ITS 1 sequences were identified from Egypt (28) and Sudan (23) (because of failure in either amplification or sequencing). The unique COI haplotypes of B. truncatus sequences observed were 6, 11, and 6 for Egypt, Sudan, and Zimbabwe, respectively. Also, 3 and 2 unique ITS 1 haplotypes were observed in sequences from Egypt and Sudan respectively. Mitochondrial DNA sequences from Sudan and Zimbabwe indicated high haplotype diversity with 0.768 and 0.784, respectively, while relatively low haplotype diversity was also observed for sequences from Egypt (0.334). The location of populations from Egypt and Sudan on the B. truncatus clade agrees with the location of both countries geographically. The clustering of the Zimbabwe sequences on different locations on the clade can be attributed to individuals with different genotypes within the population. No significant variation was observed within B. truncatus populations from Egypt and Sudan as indicated by the ITS 1 tree. This study investigated the genetic diversity of B. truncatus from Giza and Sharkia (Egypt), Barakat area (Sudan), and Madziwa (Zimbabwe), which is necessary for snail host surveillance in the study areas and also provided genomic data of this important snail species from the sampled countries.


2020 ◽  
Vol 10 (12) ◽  
pp. 6009-6019
Author(s):  
Crawford Drury ◽  
Rocío Pérez Portela ◽  
Xaymara M. Serrano ◽  
Marjorie Oleksiak ◽  
Andrew C. Baker

1996 ◽  
Vol 317 ◽  
pp. 21-71 ◽  
Author(s):  
Kenneth A. Buch ◽  
Werner J. A. Dahm

We present results from an experimental investigation into the fine-scale structure associated with the mixing of a dynamically passive conserved scalar quantity on the inner scales of turbulent shear flows. The present study was based on highly resolved two- and three-dimensional spatio-temporal imaging measurements. For the conditions studied, the Schmidt number (Sc ≡ v/D) was approximately 2000 and the local outerscale Reynolds number (Reσ≡ uσ/v) ranged from 2000 to 10000. The resolution and signal quality allow direct differentiation of the measured scalar field ζ(x, t) to give the instantaneous scalar energy dissipation rate field (Re Sc)−1 ∇ζċ∇ζ(x, t). The results show that the fine-scale structure of the scalar dissipation field, when viewed on the inner-flow scales for Sc ≡ 1, consists entirely of thin strained laminar sheet-like diffusion layers. The internal structure of these scalar dissipation sheets agrees with the one-dimensional self-similar solution for the local strain–diffusion competition in the presence of a spatially uniform but time-varying strain rate field. This similarity solution also shows that line-like structures in the scalar dissipation field decay exponentially in time, while in the vorticity field both line-like and sheet-like structures can be sustained. This sheet-like structure produces a high level of intermittency in the scalar dissipation field – at these conditions approximately 4% of the flow volume accounts for nearly 25% of the total mixing achieved. The scalar gradient vector field ∇ζ(x, t) for large Sc is found to be nearly isotropic, with a weak tendency for the dissipation sheets to align with the principal axes of the mean flow strain rate tensor. Joint probability densities of the conserved scalar and scalar dissipation rate have a shape consistent with this canonical layer-like fine-scale structure. Statistics of the conserved scalar and scalar dissipation rate fields are found to demonstrate similarity on inner-scale variables even at the relatively low Reynolds numbers investigated.


Sign in / Sign up

Export Citation Format

Share Document