haplotype diversity
Recently Published Documents


TOTAL DOCUMENTS

769
(FIVE YEARS 338)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
Vol 10 (1) ◽  
pp. 186
Author(s):  
Alejandro Flores-Alanis ◽  
Lilia González-Cerón ◽  
Frida Santillán-Valenzuela ◽  
Cecilia Ximenez ◽  
Marco A. Sandoval-Bautista ◽  
...  

For 20 years, Plasmodium vivax has been the only prevalent malaria species in Mexico, and cases have declined significantly and continuously. Spatiotemporal genetic studies can be helpful for understanding parasite dynamics and developing strategies to weaken malaria transmission, thus facilitating the elimination of the parasite. The aim of the current contribution was to analyze P. vivax-infected blood samples from patients in southern Mexico during the control (1993–2007) and pre-elimination phases (2008–2011). Nucleotide and haplotype changes in the pvmsp142 fragment were evaluated over time. The majority of multiple genotype infections occurred in the 1990s, when the 198 single nucleotide sequences exhibited 57 segregating sites, 64 mutations, and 17 haplotypes. Nucleotide and genetic diversity parameters showed subtle fluctuations from across time, in contrast to the reduced haplotype diversity and the increase in the R2 index and Tajima’s D value from 2008 to 2011. The haplotype network consisted of four haplogroups, the geographical distribution of which varied slightly over time. Haplogroup-specific B-cell epitopes were predicted. Since only high-frequency and divergent haplotypes persisted, there was a contraction of the parasite population. Given that 84% of haplotypes were exclusive to Mesoamerica, P. vivax flow is likely circumscribed to this region, representing important information for parasite surveillance.


Author(s):  
Anthony Ford ◽  
Daniel Kepple ◽  
Jonathan Williams ◽  
Gabrielle Kolesar ◽  
Colby T. Ford ◽  
...  

The unique biological features of Plasmodium vivax not only make it difficult to control but also to eliminate. For the transmission of the malaria parasite from infected human to the vector, gametocytes play a major role. The transmission potential of a malarial infection is inferred based on microscopic detection of gametocytes and molecular screening of genes in the female gametocytes. Microscopy-based detection methods could grossly underestimate the reservoirs of infection as gametocytes may occur as submicroscopic or as micro- or macro-gametocytes. The identification of genes that are highly expressed and polymorphic in male and female gametocytes is critical for monitoring changes not only in their relative proportions but also the composition of gametocyte clones contributing to transmission over time. Recent transcriptomic study revealed two distinct clusters of highly correlated genes expressed in the P. vivax gametocytes, indicating that the male and female terminal gametocytogeneses are independently regulated. However, the detective power of these genes is unclear. In this study, we compared genetic variations of 15 and 11 genes expressed, respectively, in the female and male gametocytes among P. vivax isolates from Southeast Asia, Africa, and South America. Further, we constructed phylogenetic trees to determine the resolution power and clustering patterns of gametocyte clones. As expected, Pvs25 (PVP01_0616100) and Pvs16 (PVP01_0305600) expressed in the female gametocytes were highly conserved in all geographical isolates. In contrast, genes including 6-cysteine protein Pvs230 (PVP01_0415800) and upregulated in late gametocytes ULG8 (PVP01_1452800) expressed in the female gametocytes, as well as two CPW-WPC family proteins (PVP01_1215900 and PVP01_1320100) expressed in the male gametocytes indicated considerably high nucleotide and haplotype diversity among isolates. Parasite samples expressed in male and female gametocyte genes were observed in separate phylogenetic clusters and likely represented distinct gametocyte clones. Compared to Pvs25, Pvs230 (PVP01_0415800) and a CPW-WPC family protein (PVP01_0904300) showed higher expression in a subset of Ethiopian P. vivax samples. Thus, Pvs230, ULG8, and CPW-WPC family proteins including PVP01_0904300, PVP01_1215900, and PVP01_1320100 could potentially be used as novel biomarkers for detecting both sexes of P. vivax gametocytes in low-density infections and estimating transmission reservoirs.


2022 ◽  
Vol 82 ◽  
Author(s):  
G. Adwan ◽  
G. Omar

Abstract Fluoroquinolones are important antimicrobial agents for the treatment of Pseudomonas infections. A total of 11 isolates of P. aeruginosa were collected from different clinical samples from different medical centers in the North West Bank-Palestine during 2017. In this study, resistance to fluoroquinolones and secretions of β-lactamases were detected by phenotypic methods, while presence of β-lactamase gene sequences and other virulence factors were detected by PCR technique. PCR product for gyrA, parC and parE genes were sequenced for further analyses. The phylogenetic analyses, population diversity indices and haplotypes determination were conducted using computer programs MEGA version 6, DnaSP 5.1001 and median-joining algorithm in the program Network 5, respectively. Results of this study showed that the MIC for ciprofloxacin and norfloxacin had a range of 32-256 µg/ml. In addition, all isolates carried either exoT or exoT and exoY genes, different β-lactamase genes and 82% of these isolates harbored class 1 integrons. Analyses of the gyrA, parC and parE sequences were found to be polymorphic, had high haplotype diversity (0.945-0.982), low nucleotide diversity (0.01225-0.02001) and number of haplotypes were 9 for each gyrA and parE genes and 10 haplotypes for parC gene. The founder haplotypes being Hap-1 (18%), Hap-2 (27.3%) and Hap-6 (9.1%) for gyrA, parC and parE genes, respectively. Two of ParE haplotypes were detected as indel haplotypes. The Median-joining- (MJ) networks constructed from haplotypes of these genes showed a star-like expansion. The neutrality tests (Tajima’s D test and Fu’s Fs test) for these genes showed negative values. Palestinian fluoroquinolone resistant P. aeruginosa strains showed high MIC level for fluoroquinolones, β-lactamase producers, carried type III secretion exotoxin-encoding genes, most of them had integrase I gene and had high level of mutations in QRDR regions in gyrA, parC and parE genes. All these factors may play an important role in the invasiveness of these strains and make them difficult to treat. Isolation of these strains from different medical centers, indicate the need for a strict application of infection control measures in Medical centers in the North West Bank-Palestine that aim to reduce expense and damage caused by P. aeruginosa infections. Molecular analyses showed that Palestinian fluoroquinolone resistant P. aeruginosa haplotypes are not genetically differentiated; however, more mutations may exist in these strains.


2021 ◽  
Vol 3 (2) ◽  
pp. 216-230
Author(s):  
Adelaja Akinlolu ◽  
Nabila Sule ◽  
Maryam Muhammed ◽  
David Oyedepo ◽  
Maryam Olawole ◽  
...  

Nigeria is the most populous African nation, comprising over 250 ethnic groups. The Yoruba and Fulani are the second and fourth largest ethnic groups in Nigeria, respectively. Forensic genotyping of short tandem repeats (STRs) is used in computation of Combined DNA Index System databases of individuals and ethnic groups. We examined allele diversity, haplotype frequency, haplotype diversity, and forensic genotyping data of autosomal STRs in Fulani and Yoruba residents in Ilorin, Kwara State, North Central Nigeria, in-order to further provide forensic genotyping data of these ethnic groups. Samples of 25 Fulani males and 23 Yoruba males whose ethnicity was confirmed by three generations (paternal and maternal) were collected with informed consent using purposive sampling. All individuals in the samples were unrelated. The samples were amplified and then genotyped using the SureID® 21G PCR Amplification Kit containing Amelogenin and 20 autosomal STR loci. Statistical analyses of forensic genotyping parameters confirmed no deviation from expectation of Hardy-Weinberg Equilibrium and no dependence of alleles between loci. All tested loci were polymorphic. Expected Heterozygosity and gene diversity parameters showed lower genetic diversity amongst Fulanis compared to Yorubas. This is possibly due to the prevalent custom of marriage between cousins amongst Fulanis, which is forbidden in Yoruba customs.


2021 ◽  
Author(s):  
Jia-Meng Tao ◽  
Saeed-EI Ashram ◽  
Yuan Zhang ◽  
Ya-Biao Weng ◽  
Rui-Qing Lin

Abstract Background: Neoschoengastia gallinarum is a widespread agricultural pest in China.The larvae of N. gallinarum are parasitic on the body surface of poultry. Performance, carcass quality, and normal marketing of mite infected broilers are severely affected by pruritus and pockmark lesions on the body surface. In China, N. gallinarum research has primarily focused on occurrence regularity, biology, and control methods. The genetic structure, variation, and genetic relationship between the N. gallinarum populations in China are still unclear.Methods: Genetic variations and structure among populations of N. gallinarum was examined and analyzed based on the nucleotide sequences of a 1522 nt variable region of the mitochondrial tandem genes (COI, COII, and ND5) among 4 populations from 7 collection sites in southern China.Results: A total of 192 individuals in 4 populations were analyzed. The tandem genes sequences were aligned, and 75 haplotypes were detected, 4 of these shared between populations. The range of haplotype diversity was from 0.860 (FJ) to 0.978 (GX). The pairwise FST values among populations were higher (0.096-0.551).The haplotype network mediation map and phylogenetic tree showed that the haplotypes were divided into two clade, Which did not completely follow the distribution rule of geographical populations. The AMOVA result showed that the percentage of variation within populations (72.94%) was higher than that among populations (27.06%). Neutral test and mismatch analysisrevealed that N. gallinarum had not experienced an obvious population expansion in recent historical periods, and the population size was relatively stable.Conclusions: The N. gallinarum population showed high genetic diversity based on mitochondrial tandem genes analysis and strong ecological adaptability. Despite the fact that geogrphic isolation causes certain genetic differentiation among populations, N. gallinarum high gene flow among populations as a result of human trade activities, and there was no obvious geographical genetic structure.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Ashley G. Yow ◽  
Hamed Bostan ◽  
Raúl Castanera ◽  
Valentino Ruggieri ◽  
Molla F. Mengist ◽  
...  

Pineapple (Ananas comosus (L.) Merr.) is the second most important tropical fruit crop globally, and ‘MD2’ is the most important cultivated variety. A high-quality genome is important for molecular-based breeding, but available pineapple genomes still have some quality limitations. Here, PacBio and Hi-C data were used to develop a new high-quality MD2 assembly and gene prediction. Compared to the previous MD2 assembly, major improvements included a 26.6-fold increase in contig N50 length, phased chromosomes, and >6000 new genes. The new MD2 assembly also included 161.6 Mb additional sequences and >3000 extra genes compared to the F153 genome. Over 48% of the predicted genes harbored potential deleterious mutations, indicating that the high level of heterozygosity in this species contributes to maintaining functional alleles. The genome was used to characterize the FAR1-RELATED SEQUENCE (FRS) genes that were expanded in pineapple and rice. Transposed and dispersed duplications contributed to expanding the numbers of these genes in the pineapple lineage. Several AcFRS genes were differentially expressed among tissue-types and stages of flower development, suggesting that their expansion contributed to evolving specialized functions in reproductive tissues. The new MD2 assembly will serve as a new reference for genetic and genomic studies in pineapple.


2021 ◽  
Vol 12 ◽  
Author(s):  
J. Brooks ◽  
N. P. Makunga ◽  
K. L. Hull ◽  
M. Brink-Hull ◽  
R. Malgas ◽  
...  

Aspalathus linearis (Burm. F.) R. Dahlgren (Fabaceae) or rooibos, is a strict endemic species, limited to areas of the Cederberg (Western Cape) and the southern Bokkeveld plateau (Northern Cape) in the greater Cape Floristic Region (CFR) of South Africa. Wild rooibos, unlike the cultivated type, is variable in morphology, biochemistry, ecology and genetics, and these ecotypes are broadly distinguished into two main groups, namely, reseeders and resprouters, based on their fire-survival strategy. No previous assessment of genetic diversity or population structure using microsatellite markers has been conducted in A. linearis. This study aimed to test the hypothesis that wild rooibos ecotypes are distinct in genetic variability and that the ecotypes found in the Northern Cape are differentiated from those in the Cederberg that may be linked to a fire-survival strategy as well as distinct morphological and phytochemical differences. A phylogeographical and population genetic analyses of both chloroplast (trnLF intergenic region) and newly developed species-specific nuclear markers (microsatellites) was performed on six geographically representative wild rooibos populations. From the diversity indices, it was evident that the wild rooibos populations have low-to-moderate genetic diversity (He: 0.618–0.723; Ho: 0.528–0.704). The Jamaka population (Cederberg, Western Cape) had the lowest haplotype diversity (H = 0.286), and the lowest nucleotide diversity (π = 0.006) even though the data revealed large variations in haplotype diversity (h = 0.286–0.900) and nucleotide diversity (π = 0.006–0.025) between populations and amongst regions where wild rooibos populations are found. Our data suggests that populations of rooibos become less diverse from the Melkkraal population (Suid Bokkeveld, Northern Cape) down towards the Cederberg (Western Cape) populations, possibly indicative of clinal variation. The largest genetic differentiation was between Heuningvlei (Cederberg, Western Cape) and Jamaka (FST = 0.101) localities within the Cederberg mountainous region, and, Blomfontein (Northern Cape) and Jamaka (Cederberg) (FST = 0.101). There was also a significant isolation by distance (R2 = 0.296, p = 0.044). The presence of three main clusters is also clearly reflected in the discriminant analysis of principal components (DAPC) based on the microsatellite marker analyses. The correct and appropriate management of wild genetic resources of the species is urgently needed, considering that the wild Cederberg populations are genetically distinct from the wild Northern Cape plants and are delineated in accordance with ecological functional traits of reseeding or resprouting, respectively. The haplotype divergence of the ecotypes has also provided insights into the genetic history of these populations and highlighted the need for the establishment of appropriate conservation strategies for the protection of wild ecotypes.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 654
Author(s):  
Jian-Feng Huang ◽  
Clive T. Darwell ◽  
Yan-Qiong Peng

As well as bountiful natural resources, the Indo-Burma biodiversity hotspot features high rates of habitat destruction and fragmentation due to increasing human activity; however, most of the Indo-Burma species are poorly studied. The exploration of plants closely associated with human activity will further assist us to understand our influence in the context of the ongoing extinction events in the Anthropocene. This study, based on widely and intensively sampled F. altissima across Indo-Burma and the adjacent south China ranges, using both the chloroplast psbA-trnH spacer and sixteen newly developed nuclear microsatellite markers (nSSRs), aims to explore its spatial genetic structure. The results indicated low chloroplast haplotype diversity and a moderate level of nuclear genetic diversity. Although limited seed flow was revealed by psbA-trnH, no discernible phylogeographic structure was shown due to the low resolution of cpDNA markers and dominance of an ancestral haplotype. From the nSSRs data set, phylogeographic structure was homogenized, most likely due to extensive pollen flow mediated by pollinating fig wasps. Additionally, human cultivation and human-mediated transplanting further confounded the analyses of population structure. No geographic barriers are evident across the large study range, with F. altissima constituting a single population, and extensive human cultivation is likely to have had beneficial consequences for protecting the genetic diversity of F. altissima.


2021 ◽  
Author(s):  
Kornélia Kurucz ◽  
Safia Zeghbib ◽  
Daniele Arnoldi ◽  
Giovanni Marini ◽  
Mattia Manica ◽  
...  

AbstractBackgroundThe mosquito Aedes koreicus (Edwards, 1917) is a recent invader on the European continent that was introduced to several new places since its first detection in 2008. Compared to other exotic Aedes mosquitoes with public health significance that invaded Europe during the last decades, this species’ biology, behavior, and dispersal patterns were poorly investigated to date.Methodology/Principal FindingsTo understand the species’ population relationships and dispersal patterns within Europe, a fragment of the COI gene was sequenced from 130 mosquitoes, collected from five countries where the species has been introduced and/or established. Oxford Nanopore and Illumina sequencing techniques were combined to generate the first complete nuclear and mitochondrial genomic sequences of Ae. koreicus from the European region. The complete genome of Ae. koreicus is 879 Mb. COI haplotype analyses identified five major groups (altogether 31 different haplotypes) and revealed a large-scale dispersal pattern between European Ae. koreicus populations. Continuous admixture of populations from Belgium, Italy, and Hungary was highlighted, additionally, haplotype diversity and clustering clearly indicate a separation of German sequences from other populations, pointing to an independent introduction of Ae. koreicus to Europe. Finally, a genetic expansion signal was identified, suggesting the species might be present in more locations than currently detected.Conclusions/SignificanceOur results highlight the importance of genetic research of invasive mosquitoes to understand general dispersal patterns, reveal main dispersal routes and form the baseline of future mitigation actions. The first complete genomic sequence also provides a significant leap in the general understanding of this species, opening the possibility for future genome-related studies, such as the detection of ‘Single Nucleotide Polymorphism’ markers. Considering its public health importance, it is crucial to further investigate the species’ population genetic dynamic, including a larger sampling and additional genomic markers.Author SummaryIn the present context of globalization and changing environment, the rapid spread of Invasive Mosquito Species (IMS) across Europe represents a serious public health threat because some species are competent vectors for several pathogens. A better knowledge of the IMS population relationships, demographic trends, and dispersal patterns can help the relevant authorities mitigating further spread. Aedes koreicus is an IMS that invaded the continent and has been expanding its geographic range over the last decade. In the present study, one of the most popular DNA marker (COI) was used to investigate the pan-European haplotype diversity and phylogenetic relatedness within and between Ae. koreicus populations. Also, the first complete mitochondrial genome and draft nuclear genome of Ae. koreicus were generated using combined high-throughput sequencing techniques (Oxford Nanopore, Illumina). This provides a significant leap in the general understanding of this species and opens the possibility for future genomic studies.


2021 ◽  
Author(s):  
◽  
Sebastian Logan

<p>An effective investigation of the underlying ecological processes that shape genetic diversity and connectivity typically requires comparisons among phylogeographic studies of multiple species. Phylogeographic studies of New Zealand’s coastal marine benthos have historically relied on post hoc speculation rather than directed research questions to investigate ecological processes. There has also been a lack of studies on direct developing marine molluscs. Direct developers are expected to have a low potential for dispersal and thus show a pattern of genetic isolation by distance across their distributions. Recent research indicates that this assumption may frequently be violated by instances of long distance dispersal/translocation. The oyster borer (Haustrum scobina) is an endemic direct-developing marine mollusc found in high abundances at rocky intertidal environments across the entirety of New Zealand. This distribution and life history makes H. scobina an ideal target to study genetic connectivity in a species expected to show low realised dispersal and high population genetic structuring. This thesis research used 379 new DNA sequences from the mitochondrial gene cytochrome c oxidase subunit 1 (COI) to investigate the phylogeography of H. scobina across the southern North Island. In addition 16 new COI sequences were inadvertently sequenced from the morphologically similar congener Haustrum albomarginatum. Results from both species support the recently proposed division of H. scobina and H. albomarginatum as separate species. H. scobina populations show significant geographic structure and a lack of haplotype diversity across the south-eastern North Island concordant with results of another previous study of a direct developer. This finding suggests that ecological processes may be producing similar population genetic structures for direct developers generally. Contrast between high and low haplotype diversities in northern and southern H. scobina populations respectively, indicates that southern H. scobina populations may have originated via recolonisation from northern populations following a range contraction during the Last Glacial Maximum. Evidence of multiple long distance dispersal/translocation events was found indicating that long distance dispersal via rafting and/or inadvertent human-mediated translocations may have occurred frequently. Results are then discussed with a view to inform further research in to New Zealand direct developers.</p>


Sign in / Sign up

Export Citation Format

Share Document