scholarly journals NsiR1 , a small RNA with multiple copies, modulates heterocyst differentiation in the cyanobacterium Nostoc sp. PCC 7120

2020 ◽  
Vol 22 (8) ◽  
pp. 3325-3338 ◽  
Author(s):  
Manuel Brenes‐Álvarez ◽  
Marina Minguet ◽  
Agustín Vioque ◽  
Alicia M. Muro‐Pastor
mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Manuel Brenes-Álvarez ◽  
Agustín Vioque ◽  
Alicia M. Muro-Pastor

ABSTRACT Yfr1 is a strictly conserved small RNA in cyanobacteria. A bioinformatic prediction to identify possible interactions of Yfr1 with mRNAs was carried out by using the sequences of Yfr1 from several heterocyst-forming strains, including Nostoc sp. strain PCC 7120. The results of the prediction were enriched in genes encoding outer membrane proteins and enzymes related to peptidoglycan biosynthesis and turnover. Heterologous expression assays with Escherichia coli demonstrated direct interactions of Yfr1 with mRNAs of 11 of the candidate genes. The expression of 10 of them (alr2458, alr4550, murC, all4829, all2158, mraY, alr2269, alr0834, conR, patN) was repressed by interaction with Yfr1, whereas the expression of amiC2, encoding an amidase, was increased. The interactions between Yfr1 and the 11 mRNAs were confirmed by site-directed mutagenesis of Yfr1. Furthermore, a Nostoc strain with reduced levels of Yfr1 had larger amounts of mraY and murC mRNAs, supporting a role for Yfr1 in the regulation of those genes. Nostoc strains with either reduced or increased expression of Yfr1 showed anomalies in cell wall completion and were more sensitive to vancomycin than the wild-type strain. Furthermore, growth in the absence of combined nitrogen, which involves the differentiation of heterocysts, was compromised in the strain overexpressing Yfr1, and filaments were broken at the connections between vegetative cells and heterocysts. These results indicate that Yfr1 is an important regulator of cell wall homeostasis and correct cell wall remodeling during heterocyst differentiation. IMPORTANCE Bacterial small RNAs (sRNAs) are important players affecting the regulation of essentially every aspect of bacterial physiology. The cell wall is a highly dynamic structure that protects bacteria from their fluctuating environment. Cell envelope remodeling is particularly critical for bacteria that undergo differentiation processes, such as spore formation or differentiation of heterocysts. Heterocyst development involves the deposition of additional layers of glycolipids and polysaccharides outside the outer membrane. Here, we show that a cyanobacterial phylogenetically conserved small regulatory RNA, Yfr1, coordinates the expression of proteins involved in cell wall-related processes, including peptidoglycan metabolism and transport of different molecules, as well as expression of several proteins involved in heterocyst differentiation.


Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 60 ◽  
Author(s):  
He Zhang ◽  
Xudong Xu

In the filamentous cyanobacterium, Anabaena sp. PCC 7120, single heterocysts differentiate at semi-regular intervals in response to nitrogen stepdown. HetR is a principal regulator of heterocyst differentiation, and hetP and hetZ are two genes that are regulated directly by HetR. In a hetR mutant generated from the IHB (Institute of Hydrobiology) substrain of PCC 7120, heterocyst formation can be restored by moderate expression of hetZ and hetP. The resulting heterocysts are located at terminal positions. We used a tandem promoter, PrbcLPpetE, to express hetZ and hetP strongly in the hetR mutant. Co-expression of hetZ and hetP enabled the hetR mutant to form multiple contiguous heterocysts at both terminal and intercalary positions. Expression of hetZ, alone resulted in terminally located heterocysts, whereas expression of hetP, alone produced enlarged cells in strings. In the absence of HetR, formation of heterocysts was insensitive to the peptide inhibitor, RGSGR.


FEBS Journal ◽  
2020 ◽  
Author(s):  
Isidro Álvarez‐Escribano ◽  
Manuel Brenes‐Álvarez ◽  
Elvira Olmedo‐Verd ◽  
Jens Georg ◽  
Wolfgang R. Hess ◽  
...  

1988 ◽  
Vol 170 (11) ◽  
pp. 5034-5041 ◽  
Author(s):  
J W Golden ◽  
C D Carrasco ◽  
M E Mulligan ◽  
G J Schneider ◽  
R Haselkorn

2002 ◽  
Vol 184 (14) ◽  
pp. 3931-3940 ◽  
Author(s):  
Olga A. Koksharova ◽  
C. Peter Wolk

ABSTRACT As an approach towards elucidation of the biochemical regulation of the progression of heterocyst differentiation in Anabaena sp. strain PCC 7120, we have identified proteins that bind to a 150-bp sequence upstream from hepC, a gene that plays a role in the synthesis of heterocyst envelope polysaccharide. Such proteins were purified in four steps from extracts of vegetative cells of Anabaena sp. Two of these proteins (Abp1 and Abp2) are encoded by neighboring genes in the Anabaena sp. chromosome. The genes that encode the third (Abp3) and fourth (Abp4) proteins are situated at two other loci in that chromosome. Insertional mutagenesis of abp2 and abp3 blocked expression of hepC and hepA and prevented heterocyst maturation and aerobic fixation of N2.


2019 ◽  
Author(s):  
Akiyoshi Higo ◽  
Eri Nishiyama ◽  
Kota Nakamura ◽  
Yukako Hihara ◽  
Shigeki Ehira

AbstractCyanobacteria are monophyletic organisms that perform oxygenic photosynthesis. While they exhibit great diversity, they have a common set of genes. However, the essentiality of them for viability has hampered the elucidation of their functions. One example of the genes is cyabrB1 encoding a transcriptional regulator. In the present study, we investigated the function of cyabrB1 in heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 through CRISPR interference, a method we recently utilized for the photosynthetic production of a useful chemical in the strain. Conditional knockdown of cyabrB1 in the presence of nitrate resulted in formation of heterocysts. Two genes, hetP and hepA, which are required for heterocyst formation, were up-regulated by cyabrB1 knockdown in the presence of combined nitrogen sources. The genes are known to be induced by HetR, a master regulator of heterocyst formation. hetR was not induced by cyabrB1 knockdown. hetP and hepA were repressed by direct binding of cyAbrB1 to their promoter regions in a HetR-independent manner. In addition, the over-expression of cyabrB1 abolished heterocyst formation upon nitrogen depletion. Also, knockout of cyabrB2, a paralogue gene of cyabrB1, in addition to cyabrB1 knockdown, enhanced heterocyst formation in the presence of nitrate, suggesting functional redundancy of cyAbrB proteins. We propose that a balance between amounts of HetR and cyAbrB1 is a key factor influencing heterocyst differentiation during nitrogen step-down. cyAbrB proteins are essential safety devices inhibiting heterocyst differentiation.ImportanceSpore formation in Bacillus subtilis and Streptomyces represents non-terminal differentiation and has been extensively studied as models of prokaryotic cell differentiation. In the two organisms, many cells differentiate simultaneously, and the differentiation is governed by a network in which one regulator stands at the top. Differentiation of heterocysts in Anabaena sp. PCC 7120 has also been extensively studied. The differentiation is unique because it is terminal and only 5-10% vegetative cells differentiate into heterocysts. In the present study, we identified cyAbrB1 as a repressor of two genes that are essential for heterocyst formation, hetP and hepA, independent of HetR, which is a master activator for heterocyst differentiation. The finding is reasonable for unique cell differentiation of Anabaena because cyAbrB1 could suppress heterocyst differentiation tightly in vegetative cells, while only cells in which HetR is over-expressed could differentiate into heterocysts.


Sign in / Sign up

Export Citation Format

Share Document