Changes in spinal excitability during choice reaction time: The H reflex as a probe of information transmission

2000 ◽  
Vol 37 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Thierry Hasbroucq ◽  
Motoyuki Akamatsu ◽  
Boris Burle ◽  
Michel Bonnet ◽  
Camille-Aime Possamai
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dorian Glories ◽  
Mathias Soulhol ◽  
David Amarantini ◽  
Julien Duclay

AbstractDuring voluntary contractions, corticomuscular coherence (CMC) is thought to reflect a mutual interaction between cortical and muscle oscillatory activities, respectively measured by electroencephalography (EEG) and electromyography (EMG). However, it remains unclear whether CMC modulation would depend on the contribution of neural mechanisms acting at the spinal level. To this purpose, modulations of CMC were compared during submaximal isometric, shortening and lengthening contractions of the soleus (SOL) and the medial gastrocnemius (MG) with a concurrent analysis of changes in spinal excitability that may be reduced during lengthening contractions. Submaximal contractions intensity was set at 50% of the maximal SOL EMG activity. CMC was computed in the time–frequency domain between the Cz EEG electrode signal and the unrectified SOL or MG EMG signal. Spinal excitability was quantified through normalized Hoffmann (H) reflex amplitude. The results indicate that beta-band CMC and normalized H-reflex were significantly lower in SOL during lengthening compared with isometric contractions, but were similar in MG for all three muscle contraction types. Collectively, these results highlight an effect of contraction type on beta-band CMC, although it may differ between agonist synergist muscles. These novel findings also provide new evidence that beta-band CMC modulation may involve spinal regulatory mechanisms.


1970 ◽  
Vol 31 (2) ◽  
pp. 343-348 ◽  
Author(s):  
Jerry W. Thornton ◽  
Paul D. Jacobs

Two tasks (simple and choice reaction time) were examined while varying three types of stressors (shock, threat of shock, and noise) and the stressor task relationship (i.e., task-related stress, task-unrelated stress, and no-stress). Four specific hypotheses were tested and 3 were supported in the simple reaction-time task. There were no significant differences among stressors for either task, although greater differences were reported in the simple than in the choice reaction-time task. A significant difference between the “task-relatedness” of stress levels in the simple task was interpreted as possibly due to a “coping” or “protective adaptive mechanism” in which increases in performance serve to reduce stress. Practical applications were examined.


Sign in / Sign up

Export Citation Format

Share Document