scholarly journals Interactions of Immature Human Mast Cells with Extracellular Matrix: Expression of Specific Adhesion Receptors and Their Role in Cell Binding to Matrix Proteins

1996 ◽  
Vol 106 (3) ◽  
pp. 538-543 ◽  
Author(s):  
Sabine Krüger-Krasagakes ◽  
Andreas Grützkau ◽  
Razmik Baghramian ◽  
Beate M. Henz
Immunology ◽  
1999 ◽  
Vol 98 (2) ◽  
pp. 253-257 ◽  
Author(s):  
Kruger-Krasagakes ◽  
Grutzkau ◽  
Krasagakis ◽  
Hoffmann ◽  
Henz

Blood ◽  
2002 ◽  
Vol 99 (3) ◽  
pp. 966-972 ◽  
Author(s):  
Axel Lorentz ◽  
Detlef Schuppan ◽  
Andreas Gebert ◽  
Michael P. Manns ◽  
Stephan C. Bischoff

Abstract Mast cells are inflammatory and immunoregulatory cells resident in tissues. They develop from bone marrow-derived progenitor cells that enter the tissue through the blood circulation. The specific localization and migration of mast cells in tissues is dependent on their interaction with extracellular matrix (ECM) proteins. Adhesion of human mast cells isolated from intestinal mucosa and cultured in the presence of stem cell factor (SCF) to ECM proteins is analyzed. It was observed that SCF is a unique cytokine enhancing mast cell adhesion to all tested ECM proteins (fibronectin, laminin, collagen I, III, IV, VI, XIV) up to 5-fold, particularly to fibronectin (54% ± 12% of mast cells) and to denatured collagens (40% ± 12% on cyanogen bromide-cleaved peptides of collagen I). Most noteworthy, preculture of mast cells with interleukin-4 (IL-4), in addition to SCF, reduced their potency to adhere to ECM proteins to one third compared to mast cells cultured with SCF alone. Mast cell adhesion was preferentially mediated by β1 integrins, and most cells expressed the ECM-binding integrins α2β1, α3β1, α4β1, α5β1, and αVβ3. SCF-induced mast cell adhesion was totally blocked by wortmannin and apigenin, indicating an involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase, and it was related to an up-regulation of the HUTS-21 β1 epitope, which is associated with an activated conformation of β1. In conclusion, these data indicate that SCF induces the adhesion of cultured mast cells to ECM proteins, whereas IL-4 may promote detachment from the ECM.


1998 ◽  
Vol 79 (03) ◽  
pp. 640-648 ◽  
Author(s):  
Alka Khaitan ◽  
Gunther Fless ◽  
Jane Hoover-Plow

SummaryLipoprotein(a), Lp(a), is found in the extracellular matrix in athero-sclerotic plaques, but with a different localization than LDL. A two-compartment system, with a monolayer of endothelial cells forming a barrier, was used to compare the transport, cell binding, and retention of Lp(a) and LDL into the subendothelial matrix. Baseline values for transport and retention of Lp(a) and LDL were not significantly different. Incubation with lipoprotein lipase or sphingomyelinase caused modest and similar increases in transport and retention of the two lipo-proteins. In contrast, incubation with phospholipase A2 (PLA2) resulted in a marked (4-fold) increase in retention of Lp(a) on the subendothelial matrix, but a lesser (2-fold) increase in LDL retention. Moreover, PLA2 treatment of Lp(a) enhanced its binding to individual matrix proteins (fibronectin, laminin, or collagen) by 4-10 times above that of LDL. The enzymatic activity of PLA2 was responsible for its effect on Lp(a) binding. The lysine binding sites of Lp(a) contributed to the increased binding of PLA2-modified Lp(a) to the matrix, and the enhanced lysine binding functions of PLA2-modified Lp(a) was demonstrated by two independent approaches. Thus, PLA2 modification leads to enhanced interactions of lipoproteins with the extracellular matrix, and this effect is more pronounced with Lp(a).


1998 ◽  
Vol 114 ◽  
pp. A1026
Author(s):  
A Lorentz ◽  
G Sellge ◽  
D Schuppan ◽  
MP Manns ◽  
SC Bischoff

Sign in / Sign up

Export Citation Format

Share Document