β1 integrins
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 25)

H-INDEX

62
(FIVE YEARS 3)

2022 ◽  
Vol 5 (4) ◽  
pp. e202101301
Author(s):  
Ralph T Böttcher ◽  
Nico Strohmeyer ◽  
Jonas Aretz ◽  
Reinhard Fässler

Integrins require an activation step before ligand binding and signaling that is mediated by talin and kindlin binding to the β integrin cytosolic domain (β-tail). Conflicting reports exist about the contribution of phosphorylation of a conserved threonine motif in the β1-tail (β1-pT788/pT789) to integrin activation. We show that widely used and commercially available antibodies against β1-pT788/pT789 integrin do not detect specific β1-pT788/pT789 integrin signals in immunoblots of several human and mouse cell lysates but bind bi-phosphorylated threonine residues in numerous proteins, which were identified by mass spectrometry experiments. Furthermore, we found that fibroblasts and epithelial cells expressing the phospho-mimicking β1-TT788/789DD integrin failed to activate β1 integrins and displayed reduced integrin ligand binding, adhesion initiation and cell spreading. These cellular defects are specifically caused by the inability of kindlin to bind β1-tail polypeptides carrying a phosphorylated threonine motif or phospho-mimicking TT788/789DD substitutions. Our findings indicate that the double-threonine motif in β1-class integrins is not a major phosphorylation site but if phosphorylated would curb integrin function.


2021 ◽  
Vol 20 (3) ◽  
pp. 17-24
Author(s):  
O. A. Bocharova ◽  
V. B. Matveev ◽  
E. V. Bocharov ◽  
R. V. Karpova ◽  
V. G. Kucheryanu

The review presents the concept the key mechanism of the tumor process is a violation of adhesion interactions involving local and central mechanisms. Local features of adhesive dysregulation are demonstrated in the first part. The lack of histospecific adhesion molecules expression resulting from stress or genetic mutation damages an important mechanism of antitumor protection of the tissue disrupting the processes of proliferation and differentiation. The deficiency of histone-specific homotypic adhesion molecules which occurs later exacerbates the disorders. This leads to a decrease in the expression of leukocyte integrins (LFA-1, Mac-1) ligands of the β2 family on the surface of immune effectors and to an increase also in the expression of adhesion molecules to the substrate-antigens VLA (very late activation) family of β1 -integrins on tumor cells. The first restricts the interaction of ICAM family molecules with their contra-receptors from the β2 -integrin family reducing the elimination of target cells by immune effectors which contributes to the screening of the tumor from antitumor surveillance. The second promotes the invasion of the tumor into the surrounding tissues, the formation of blood vessels as well as its heterotypic adhesion with other tissues which further stimulates the proliferation and suppression processes of tumor cells apoptosis. So, the adhesion molecules can be compared to the Phoenix bird: disappearing at the beginning of the process (between the similar cells), they reappear in a new quality (increasing adhesion to cells of other tissues), increasing the totalysm of the tumor. It should be taken into account that tumor cells due to adhesion dysregulation “isolate themselves from society”, lose their differentiation, their maturity and “fall into childhood”, being unable to perform specific, “adult” functions. So, cancer can be considered as a manifestation of the cells aging. Therefore, the anti-stress, endogenous geroprotective mechanisms activation based on the adhesion correction can be effective for preventing and treatment the oncological process. 


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1007
Author(s):  
Igor Tsaur ◽  
Anita Thomas ◽  
Eva Juengel ◽  
Sebastian Maxeiner ◽  
Timothy Grein ◽  
...  

The serum level of soluble (s)E-cadherin is elevated in several malignancies, including prostate cancer (PCa). This study was designed to investigate the effects of sE-cadherin on the behavior of PCa cells in vitro, with the aim of identifying a potential therapeutic target. Growth as well as adhesive and motile behavior were evaluated in PC3, DU-145, and LNCaP cells. Flow cytometry was used to assess cell cycle phases and the surface expression of CD44 variants as well as α and β integrins. Confocal microscopy was utilized to visualize the distribution of CD44 variants within the cells. Western blot was applied to investigate expression of α3 and β1 integrins as well as cytoskeletal and adhesion proteins. Cell growth was significantly inhibited after exposure to 5 µg/mL sE-cadherin and was accompanied by a G0/G1-phase arrest. Adhesion of cells to collagen and fibronectin was mitigated, while motility was augmented. CD44v4, v5, and v7 expression was elevated while α3 and β1 integrins were attenuated. Blocking integrin α3 reduced cell growth and adhesion to collagen but increased motility. sE-cadherin therefore appears to foster invasive tumor cell behavior, and targeting it might serve as a novel and innovative concept to treat advanced PCa.


2021 ◽  
Author(s):  
Marko Roblek ◽  
Julia Bicher ◽  
Merel van Gogh ◽  
Attila Gyoergy ◽  
Rita Seeboeck ◽  
...  

Solute carriers are increasingly recognized as participating in a plethora of pathologies, including cancer. We describe here the involvement of the orphan solute carrier MFSD1 in the regulation of tumor cell migration. Loss of MFSD1 enabled higher levels of metastasis in a mouse model. We identified an increased migratory potential in MFSD1-/- tumor cells which was mediated by increased focal adhesion turn-over, reduced stability of mature inactive β1 integrin, and the resulting increased integrin activation index. We show that MFSD1 promoted recycling to the cell surface of endocytosed inactive β1 integrin and thereby protected β1 integrin from proteolytic degradation; this led to dampening of the integrin activation index. Furthermore, down-regulation of MFSD1 expression was observed during early steps of tumorigenesis and higher MFSD1 expression levels correlate with a better cancer patient prognosis. In sum, we describe a requirement for endolysosomal MFSD1 in efficient β1 integrin recycling to suppress tumor spread.


2021 ◽  
Vol 218 (7) ◽  
Author(s):  
Jorge Arasa ◽  
Victor Collado-Diaz ◽  
Ioannis Kritikos ◽  
Jessica Danielly Medina-Sanchez ◽  
Mona Carina Friess ◽  
...  

Dendritic cell (DC) migration to draining lymph nodes (dLNs) is a slow process that is believed to begin with DCs approaching and entering into afferent lymphatic capillaries. From capillaries, DCs slowly crawl into lymphatic collectors, where lymph flow induced by collector contraction supports DC detachment and thereafter rapid, passive transport to dLNs. Performing a transcriptomics analysis of dermal endothelial cells, we found that inflammation induces the degradation of the basement membrane (BM) surrounding lymphatic collectors and preferential up-regulation of the DC trafficking molecule VCAM-1 in collectors. In crawl-in experiments performed in ear skin explants, DCs entered collectors in a CCR7- and β1 integrin–dependent manner. In vivo, loss of β1-integrins in DCs or of VCAM-1 in lymphatic collectors had the greatest impact on DC migration to dLNs at early time points when migration kinetics favor the accumulation of rapidly migrating collector DCs rather than slower capillary DCs. Taken together, our findings identify collector entry as a critical mechanism enabling rapid DC migration to dLNs in inflammation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Melanie Koehler ◽  
Simon J. L. Petitjean ◽  
Jinsung Yang ◽  
Pavithra Aravamudhan ◽  
Xayathed Somoulay ◽  
...  

AbstractReovirus infection requires the concerted action of viral and host factors to promote cell entry. After interaction of reovirus attachment protein σ1 with cell-surface carbohydrates and proteinaceous receptors, additional host factors mediate virus internalization. In particular, β1 integrin is required for endocytosis of reovirus virions following junctional adhesion molecule A (JAM-A) binding. While integrin-binding motifs in the surface-exposed region of reovirus capsid protein λ2 are thought to mediate integrin interaction, evidence for direct β1 integrin-reovirus interactions and knowledge of how integrins function to mediate reovirus entry is lacking. Here, we use single-virus force spectroscopy and confocal microscopy to discover a direct interaction between reovirus and β1 integrins. Comparison of interactions between reovirus disassembly intermediates as well as mutants and β1 integrin show that λ2 is the integrin ligand. Finally, using fluidic force microscopy, we demonstrate a functional role for β1 integrin interaction in promoting clathrin recruitment to cell-bound reovirus. Our study demonstrates a direct interaction between reovirus and β1 integrins and offers insights into the mechanism of reovirus cell entry. These results provide new perspectives for the development of efficacious antiviral therapeutics and the engineering of improved viral gene delivery and oncolytic vectors.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 645
Author(s):  
Eun Jeong Park ◽  
Phyoe Kyawe Myint ◽  
Michael Gyasi Appiah ◽  
Samuel Darkwah ◽  
Siqingaowa Caidengbate ◽  
...  

The spike glycoprotein attached to the envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to and exploits angiotensin-converting enzyme 2 (ACE2) as an entry receptor to infect pulmonary epithelial cells. A subset of integrins that recognize the arginyl–glycyl–aspartic acid (RGD) sequence in the cognate ligands has been predicted in silico to bind the spike glycoprotein and, thereby, to be exploited for viral infection. Here, we show experimental evidence that the β1 integrins predominantly expressed on human pulmonary epithelial cell lines and primary mouse alveolar epithelial cells bind to this spike protein. The cellular β1 integrins support adhesive interactions with the spike protein independently of ACE2, suggesting the possibility that the β1 integrins may function as an alternative receptor for SARS-CoV-2, which could be targeted for the prevention of viral infections.


2021 ◽  
Vol 220 (2) ◽  
Author(s):  
Sanela Vellino ◽  
Christiane Oddou ◽  
Paul Rivier ◽  
Cyril Boyault ◽  
Edwige Hiriart-Bryant ◽  
...  

Invadosomes support cell invasion by coupling both acto-adhesive and extracellular matrix degradative functions, which are apparently antagonistic. β1-integrin dynamics regulate this coupling, but the actual sensing mechanism and effectors involved have not yet been elucidated. Using genetic and reverse genetic approaches combined with biochemical and imaging techniques, we now show that the calcium channel TRPV4 colocalizes with β1-integrins at the invadosome periphery and regulates its activation and the coupling of acto-adhesive and degradative functions. TRPV4-mediated regulation of podosome function depends on its ability to sense reactive oxygen species (ROS) in invadosomes’ microenvironment and involves activation of the ROS/calcium-sensitive kinase Ask1 and binding of the motor MYO1C. Furthermore, disease-associated TRPV4 gain-of-function mutations that modulate ECM degradation are also implicated in the ROS response, which provides new perspectives in our understanding of the pathophysiology of TRPV4 channelopathies.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2531
Author(s):  
Anna Gorrasi ◽  
Anna Maria Petrone ◽  
Anna Li Santi ◽  
Mariaevelina Alfieri ◽  
Nunzia Montuori ◽  
...  

The urokinase (uPA) receptor (uPAR) plays a key role in cell migration. We previously showed that uPAR-negative HEK-293 cells efficiently migrate toward serum but, after uPAR ectopic expression, migrate only in a uPAR-dependent manner. In fact, migration of uPAR-transfected HEK-293 (uPAR-293) cells is impaired by anti-uPAR antibodies, without recovery of the uPAR-independent migration mechanisms formerly active. Prostate carcinoma PC3 cells, which express high endogenous uPAR levels, migrated only through a uPAR-dependent mechanism; in fact, the silencing of uPAR expression inhibited their migration. We hypothesize a crucial role of the uPAR glycosyl-phosphatidyl-inositol (GPI) tail, which promotes uPAR partitioning to lipid rafts, in uPAR-controlled cell migration. Here, we show that removal of the uPAR GPI-tail, or lipid rafts disruption by methyl-beta-cyclodextrin impairs migration of PC3 cells, incapable of uPAR-independent migration, whereas it restores uPAR-independent migration in uPAR-293 cells. We then show that, in PC3 cells, both uPAR signaling partners, β1 integrins and receptors for formylated peptides (FPRs), partly associate with lipid rafts. Inhibition of their interaction with uPAR impairs this association and impairs cell migration. Interestingly, blocking uPAR association with FPRs also impairs β1 integrin partitioning to lipid rafts, whereas blocking its association with β1 integrins has no effect on FPRs partitioning. On these bases, we propose that uPAR controls cell migration by connecting β1 integrins and FPRs and, through its GPI tail, by driving them into lipid rafts, thus promoting pro-migratory signals. uPAR-mediated partitioning of integrins to lipid rafts is strictly dependent on uPAR association with FPRs.


Sign in / Sign up

Export Citation Format

Share Document