scholarly journals Reference genome and demographic history of the most endangered marine mammal, the vaquita

Author(s):  
Phillip A. Morin ◽  
Frederick I. Archer ◽  
Catherine D. Avila ◽  
Jennifer R. Balacco ◽  
Yury V. Bukhman ◽  
...  
2020 ◽  
Author(s):  
Phillip A. Morin ◽  
Frederick I. Archer ◽  
Catherine D. Avila ◽  
Jennifer R. Balacco ◽  
Yury V. Bukhman ◽  
...  

AbstractThe vaquita is the most critically endangered marine mammal, with fewer than 19 remaining in the wild. First described in 1958, the vaquita has been in rapid decline resulting from inadvertent deaths due to the increasing use of large-mesh gillnets for more than 20 years. To understand the evolutionary and demographic history of the vaquita, we used combined long-read sequencing and long-range scaffolding methods with long- and short-read RNA sequencing to generate a near error-free annotated reference genome assembly from cell lines derived from a female individual. The genome assembly consists of 99.92% of the assembled sequence contained in 21 nearly gapless chromosome-length autosome scaffolds and the X-chromosome scaffold, with a scaffold N50 of 115 Mb. Genome-wide heterozygosity is the lowest (0.01%) of any mammalian species analyzed to date, but heterozygosity is evenly distributed across the chromosomes, consistent with long-term small population size at genetic equilibrium, rather than low diversity resulting from a recent population bottleneck or inbreeding. Historical demography of the vaquita indicates long-term population stability at less than 5000 (Ne) for over 200,000 years. Together, these analyses indicate that the vaquita genome has had ample opportunity to purge highly deleterious alleles and potentially maintain diversity necessary for population health.


2008 ◽  
Vol 34 (3) ◽  
pp. 367-380
Author(s):  
William Eugene Evans

Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1511-1518 ◽  
Author(s):  
Ning Yu ◽  
Michael I Jensen-Seaman ◽  
Leona Chemnick ◽  
Judith R Kidd ◽  
Amos S Deinard ◽  
...  

Abstract Comparison of the levels of nucleotide diversity in humans and apes may provide much insight into the mechanisms of maintenance of DNA polymorphism and the demographic history of these organisms. In the past, abundant mitochondrial DNA (mtDNA) polymorphism data indicated that nucleotide diversity (π) is more than threefold higher in chimpanzees than in humans. Furthermore, it has recently been claimed, on the basis of limited data, that this is also true for nuclear DNA. In this study we sequenced 50 noncoding, nonrepetitive DNA segments randomly chosen from the nuclear genome in 9 bonobos and 17 chimpanzees. Surprisingly, the π value for bonobos is only 0.078%, even somewhat lower than that (0.088%) for humans for the same 50 segments. The π values are 0.092, 0.130, and 0.082% for East, Central, and West African chimpanzees, respectively, and 0.132% for all chimpanzees. These values are similar to or at most only 1.5 times higher than that for humans. The much larger difference in mtDNA diversity than in nuclear DNA diversity between humans and chimpanzees is puzzling. We speculate that it is due mainly to a reduction in effective population size (Ne) in the human lineage after the human-chimpanzee divergence, because a reduction in Ne has a stronger effect on mtDNA diversity than on nuclear DNA diversity.


2021 ◽  
Vol 13 (3) ◽  
Author(s):  
J Roman Arguello ◽  
Stefan Laurent ◽  
Andrew G Clark

2008 ◽  
Vol 4 (6) ◽  
pp. 752-754 ◽  
Author(s):  
Emma Svensson ◽  
Anders Götherström

Phylogeography has recently become more abundant in studies of demographic history of both wild and domestic species. A single nucleotide polymorphism (SNP) in the intron of the Y-chromosomal gene UTY19 displays a north–south gradient in modern cattle. Support for this geographical distribution of haplogroups has previously also been seen in ancient cattle from Germany. However, when analysing 38 historic remains of domestic bulls and three aurochs from northern Europe for this SNP we found no such association. Instead, we noted extensive amounts of temporal variation that can be attributed to transportation of cattle and late breed formation.


2010 ◽  
Vol 60 (4) ◽  
pp. 449-465
Author(s):  
Wen Longying ◽  
Zhang Lixun ◽  
An Bei ◽  
Luo Huaxing ◽  
Liu Naifa ◽  
...  

AbstractWe have used phylogeographic methods to investigate the genetic structure and population history of the endangered Himalayan snowcock (Tetraogallus himalayensis) in northwestern China. The mitochondrial cytochrome b gene was sequenced of 102 individuals sampled throughout the distribution range. In total, we found 26 different haplotypes defined by 28 polymorphic sites. Phylogenetic analyses indicated that the samples were divided into two major haplogroups corresponding to one western and one eastern clade. The divergence time between these major clades was estimated to be approximately one million years. An analysis of molecular variance showed that 40% of the total genetic variability was found within local populations, 12% among populations within regional groups and 48% among groups. An analysis of the demographic history of the populations suggested that major expansions have occurred in the Himalayan snowcock populations and these correlate mainly with the first and the second largest glaciations during the Pleistocene. In addition, the data indicate that there was a population expansion of the Tianshan population during the uplift of the Qinghai-Tibet Plateau, approximately 2 million years ago.


1997 ◽  
Vol 26 (1) ◽  
pp. 15-46 ◽  
Author(s):  
David Britain

ABSTRACTThis article reports on research carried out in the Fens in Eastern England, a region noted in the dialectological literature as the site of a number of important phonological transitions, most notably [] and [a – a:], which separate northern and southern varieties of British English. Recordings of 81 speakers from across the Fens were analyzed for the use of (ai), a particularly salient local variable. A “Canadian Raising” type of allophonic variation was found in the central Fenland: speakers in this area used raised onsets of (ai) before voiceless consonants but open onsets before voiced consonants, morpheme boundaries, and //. The article weighs a number of possible explanations for the emergence of this variation in the Fens. Based on compelling evidence from the demographic history of the area, it supports a view that such an allophonic distribution, previously thought not to be found in Britain, emerged as the result of dialect contact. The sociolinguistic process of koinéization that is commonly associated with post-contact speech communities (Trudgill 1986) is held responsible for the focusing of this allophonic variation from the input dialects of an initially mixed variety. The article concludes by suggesting a socially based explanatory model to account for the way that speakers implement processes of focusing and koinéization in areas of dialect contact. [English, dialects, contact, koiné, geographical linguistics, social networks, structuration theory)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nandika Perera ◽  
Gayani Galhena ◽  
Gaya Ranawaka

AbstractA new 16 X-short tandem repeat (STR) multiplex PCR system has recently been developed for Sr Lankans, though its applicability in evolutionary genetics and forensic investigations has not been thoroughly assessed. In this study, 838 unrelated individuals covering all four major ethnic groups (Sinhalese, Sri Lankan Tamils, Indian Tamils and Moors) in Sri Lanka were successfully genotyped using this new multiplex system. The results indicated a high forensic efficiency for the tested loci in all four ethnicities confirming its suitability for forensic applications of Sri Lankans. Allele frequency distribution of Indian Tamils showed subtle but statistically significant differences from those of Sinhalese and Moors, in contrast to frequency distributions previously reported for autosomal STR alleles. This suggest a sex biased demographic history among Sri Lankans requiring a separate X-STR allele frequency database for Indian Tamils. Substantial differences observed in the patterns of LD among the four groups demand the use of a separate haplotype frequency databases for each individual ethnicity. When analysed together with other 14 world populations, all Sri Lankan ethnicities except Indian Tamils clustered closely with populations from Indian Bhil tribe, Bangladesh and Europe reflecting their shared Indo-Aryan ancestry.


Sign in / Sign up

Export Citation Format

Share Document