Mineral Assemblages and Deformation of An Ore-Controlling Fault: A Case Study from the Xincheng Gold Deposit, Jiaodong, China

2014 ◽  
Vol 88 (s2) ◽  
pp. 1462-1463
Author(s):  
Ruihong LI ◽  
Liqiang YANG ◽  
Hailin LI ◽  
Yu LIU
2020 ◽  
Vol 175 (9) ◽  
Author(s):  
Riikka Fred ◽  
Aku Heinonen ◽  
Jussi S. Heinonen

Abstract Fe–Ti–P-rich mafic to intermediate rocks (monzodiorites and oxide–apatite–gabbronorites, OAGNs) are found as small intrusions in most AMCG (anorthosite–magnerite–charnokite–granite) suites. The origin of the monzodioritic rocks is still debated, but in many studies, they are presumed to represent residual liquid compositions after fractionation of anorthositic cumulates. In the 1.64 Ga Ahvenisto complex, SE Finland, monzodioritic rocks occur as minor dike-like lenses closely associated with anorthositic rocks. We report new field, petrographic, and geochemical (XRF, ICP-MS, EMPA) data complemented with crystallization modeling (rhyolite-MELTS, MAGFRAC) for the monzodioritic rocks, apatite–oxide–gabbronorite, and olivine-bearing anorthositic rocks of the Ahvenisto complex. The presented evidence suggest that the monzodioritic rocks closely represent melt compositions while the apatite–oxide–gabbronorite and olivine-bearing anorthositic rocks are cumulates. The monzodioritic rocks seem to form a liquid line of descent (LLD) from primitive olivine monzodiorites to more evolved monzodiorites. Petrological modeling suggests that the interpreted LLD closely corresponds to a residual melt trend left after fractional crystallization (FC) and formation of the cumulate anorthositic rocks and minor apatite–oxide–gabbronorite in shallow magma chambers. Consequent equilibrium crystallization (EC) of separate monzodioritic residual magma batches can produce the observed mineral assemblages and the low Mg numbers measured from olivine (Fo25–45) and pyroxenes (En48–63, Mg#cpx 60–69). The monzodioritic rocks and apatite–oxide–gabbronorites show similar petrological and geochemical characteristics to corresponding rock types in other AMCG suites, and the model described in this study could be applicable to them as well.


2003 ◽  
Vol 48 (17) ◽  
pp. 1887-1891 ◽  
Author(s):  
Xiaoming Sun ◽  
Wen Chen ◽  
Min Wang ◽  
Ting Xue ◽  
Kai Sun ◽  
...  
Keyword(s):  

Author(s):  
Fabrizio Tursi

AbstractA careful petrologic analysis of mylonites’ mineral assemblages is crucial for a thorough comprehension of the rheologic behaviour of ductile shear zones active during an orogenesis. In this view, understanding the way new minerals form in rocks sheared in a ductile manner and why relict porphyroblasts are preserved in zones where mineral reactions are generally supposed to be deformation-assisted, is essential. To this goal, the role of chemical potential gradients, particularly that of H2O (µH2O), was examined here through phase equilibrium modelling of syn-kinematic mineral assemblages developed in three distinct mylonites from the Calabria polymetamorphic terrane. Results revealed that gradients in chemical potentials have effects on the mineral assemblages of the studied mylonites, and that new syn-kinematic minerals formed in higher-µH2O conditions than the surroundings. In each case study, the banded fabric of the mylonites is related to the fluid availability in the system, with the fluid that was internally generated by the breakdown of OH-bearing minerals. The gradients in µH2O favoured the origin of bands enriched in hydrated minerals alternated with bands where anhydrous minerals were preserved even during exhumation. Thermodynamic modelling highlights that during the prograde stage of metamorphism, high-µH2O was necessary to form new minerals while relict, anhydrous porphyroblasts remained stable in condition of low-µH2O even during exhumation. Hence, the approach used in this contribution is an in-depth investigation of the fluid-present/-deficient conditions that affected mylonites during their activity, and provides a more robust interpretation of their microstructures, finally helping to explain the rheologic behaviour of ductile shear zones.


Sign in / Sign up

Export Citation Format

Share Document