liquid line
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 39 (5) ◽  
pp. 1483-1490
Author(s):  
Andriyanto Setyawan ◽  
Susilawati Susilawati ◽  
Tandi Sutandi ◽  
Hafid Najmudin

An experiment has been carried out for examining the performance of an air conditioning unit under constant outdoor wet-bulb temperature and varied dry-bulb temperature. During the experiment, the wet-bulb temperature of the compartment for outdoor unit was maintained at 22℃ and the dry-bulb temperature was varied from 24℃ to 36℃. The increase of outdoor air temperature results in the increase of supply air temperature, discharge temperature, suction temperature, and liquid line temperature. These cause the degradation of the air conditioner performance. An increase of power consumption by 1.4% and decrease of cooling capacity by 0.8% were observed for each 1℃ increase of outdoor air temperature. As a result, the energy efficiency ratio drops by 2% for each 1℃ increase of outdoor air temperature.



2021 ◽  
Author(s):  
Basil Ogbunude ◽  
Aniekan Obot ◽  
Abdul-Wahab Sa'ad ◽  
Sunday Maxwell-Amgbaduba ◽  
Etta Agbor ◽  
...  

Abstract Often, the production of oil and gas from underground reservoirs is accompanied by produced water which generally increases with time for a matured field, attributable to natural water encroachment, bottom water ingress, coning effect due to higher production rates, channeling effects, etc. This trend poses a production challenge with respect to increased OPEX cost and environmental considerations of treatment/handling and disposal of the produced water considering the late life performance characterized by low reward margins. Hence, produced water management solutions that reduce OPEX cost is key to extending the field life whilst ensuring a positive cash flow for the asset. SK field is located in the Swamp Area of the Niger Delta, with a capacity of 1.1Bcf gas plant supplying gas to a nearby LNG plant. Oil and gas production from the field is evacuated via the liquid and gas trunk lines respectively. Due to the incessant tampering with oil delivery lines and environmental impact of spillage, the condensate is spiked through the gas trunk line to the LNG plant. Largely, the water/effluent contained in the tank is evacuated through the liquid line. Based on the availability of the liquid line (ca. 40%-60%), the produced water is a constraint to gas production with estimated tank endurance time (ca. 8 days at 500MMscfd). This leads to creaming of gas production and indeed gas deferments due to produced water management, making it difficult to meet the contractual supply obligation to the LNG plant. An interim solution adopted was to barge the produced water to the oil and gas export terminal, with an associated OPEX cost of ca. US$2Mln/month. Upon further review of an alternate barging option, this option was considered too expensive, inefficient and unsustainable with inherent HSSE exposure. Therefore, a produced water re-injection project was scoped and executed as a viable alternative to produced water management. This option was supported by the Regulators as a preferred option for produced water management for the industry.







2020 ◽  
Vol 175 (9) ◽  
Author(s):  
Riikka Fred ◽  
Aku Heinonen ◽  
Jussi S. Heinonen

Abstract Fe–Ti–P-rich mafic to intermediate rocks (monzodiorites and oxide–apatite–gabbronorites, OAGNs) are found as small intrusions in most AMCG (anorthosite–magnerite–charnokite–granite) suites. The origin of the monzodioritic rocks is still debated, but in many studies, they are presumed to represent residual liquid compositions after fractionation of anorthositic cumulates. In the 1.64 Ga Ahvenisto complex, SE Finland, monzodioritic rocks occur as minor dike-like lenses closely associated with anorthositic rocks. We report new field, petrographic, and geochemical (XRF, ICP-MS, EMPA) data complemented with crystallization modeling (rhyolite-MELTS, MAGFRAC) for the monzodioritic rocks, apatite–oxide–gabbronorite, and olivine-bearing anorthositic rocks of the Ahvenisto complex. The presented evidence suggest that the monzodioritic rocks closely represent melt compositions while the apatite–oxide–gabbronorite and olivine-bearing anorthositic rocks are cumulates. The monzodioritic rocks seem to form a liquid line of descent (LLD) from primitive olivine monzodiorites to more evolved monzodiorites. Petrological modeling suggests that the interpreted LLD closely corresponds to a residual melt trend left after fractional crystallization (FC) and formation of the cumulate anorthositic rocks and minor apatite–oxide–gabbronorite in shallow magma chambers. Consequent equilibrium crystallization (EC) of separate monzodioritic residual magma batches can produce the observed mineral assemblages and the low Mg numbers measured from olivine (Fo25–45) and pyroxenes (En48–63, Mg#cpx 60–69). The monzodioritic rocks and apatite–oxide–gabbronorites show similar petrological and geochemical characteristics to corresponding rock types in other AMCG suites, and the model described in this study could be applicable to them as well.



2020 ◽  
Author(s):  
Manuel Pimenta Silva ◽  
Peter Ulmer ◽  
Othmar Müntener

<p>In the southern part of the Adamello Batholith (43-33 Ma; Schaltegger et al., 2019) in Northern Italy (Re di Castello superunit), we identified a multi-generational dyke suite with “exotic” chemical compositions intruding quartz-dioritic units surrounding a gabbroic complex. These dykes are characterised by SiO<sub>2</sub> contents between 43 and 46 wt.%, high Al<sub>2</sub>O<sub>3</sub> (20-21 wt.%), and low MgO and Ni (below 6.5 wt.% and 40 μg/g, respectively), displaying a nepheline-normative character. Furthermore, they exhibit positive Sr and Ba anomalies. These chemical features exclude a possible primitive character or derivation from a typical calc-alkaline liquid line of descent, as identified for the Adamello Massif (Ulmer et al, 2018). The primocrystic cargo of these dikes (clinopyroxene, anorthitic plagioclase, and low-Si, high-Na pargasitic amphibole) displays striking similarities with cumulate crystals of the contiguous Blumone amphibole gabbroic cumulate, inferring mechanical interaction of these exotic liquids with and/or derivation from the cumulate complex. Amphibole-plagioclase equilibration temperatures of the dikes (875 to 775ºC) are consistent with thermal equilibration with the surrounding quartz-dioritic mush. Sharp contacts and dyke fragmentation are also observed and are thermally congruent with the ductile-brittle transition of a quartz-dioritic to tonalitic mush (Marxer & Ulmer, 2019).</p><p>Simple mass balance calculations modelling of the peritectic melting of pargasitic amphibole and high-An plagioclase (major mineral phases of the contiguous amphibole gabbroic cumulates) with simultaneous crystallisation of low-Al clinopyroxene reveal that melt compositions similar to these dykes can be achieved with amphibole-plagioclase proportions ranging between 65:35 and 50:50. To verify if peritectic cumulate remelting represents a possible generation mechanism of these dykes we performed<span>  </span>experiments at 0.2 GPa.</p><p>Established phase equilibria of these dyke compositions reveal a lack of near-liquidus olivine, which is a rare phase in gabbroic complex. This is consistent with preliminary experimental results on cumulate melting, where olivine is also absent at high temperatures (> 1075ºC). These observations further disprove the petrogenesis of these liquids via a calc-alkaline liquid line of descent, where mafic magmas would be early saturated in olivine at low pressure further supporting their generation by local remelting of amphibole-plagioclase dominated mafic cumulates.Geochemical as well as experimental results both strongly point towards the petrogenesis of these nepheline-normative, high-Al, low-Mg picrobasalts by low pressure peritectic melting of a pargasite-anorthite cumulate assemblage in an active magmatic system.</p><p> </p><p>Marxer, F. & Ulmer, P. <em>Contrib Mineral Petr.</em> <strong>174(10)</strong>, 84 (2019).</p><p>Schaltegger, U. <em>et al. J Petrol. </em><strong>60(4)</strong>, 701-722 (2019).</p><p>Ulmer, P. <em>et al. J. Petrol.</em> <strong>59(1)</strong>, 11-58 (2018).</p>



2020 ◽  
Author(s):  
Edgar Alejandro Cortes Calderon ◽  
Ben Ellis ◽  
Julia Neukampf ◽  
Chris Harris ◽  
Darren Mark ◽  
...  

<p>Peralkaline magmatism is mostly sustained by extensive feldspar fractionation from mafic parents at shallow depths in intraplate settings. In this case, silica saturation is critical as it controls the differentiation trend that a peralkaline magma follows. SiO<sub>2</sub>-oversaturated parents fractionate towards rhyolites, and SiO<sub>2</sub>-undersaturated towards phonolitic compositions. The Miocene post-shield stage of Gran Canaria records both differentiation trends, which has previously been ascribed to changes in the mantle source. Such stage has been divided in the Mogan and Fataga Group based on silica saturation. Here, we propose that contamination plays a key role in the differentiation of Gran Canaria volcanics. This assumption is supported with new <sup>40</sup>Ar/<sup>39</sup>Ar geochronology, mineral, glass and juvenile clast chemistry (oxygen isotopes, major and trace elements) merged with a detailed stratigraphy. Two types of contaminants were identified, one being cogenetic feldspar-dominated cumulates and the second one being sediments within the island crust. We propose that barium-rich trachytic magmas with positive europium anomalies are linked to melting of the feldspar cumulates left after extensive fractional crystallisation. The chemistry of such trachytes does not follow a liquid line of descent and contains reverse-zoned alkali-feldspars. The shift in silica saturation took less than 1 Ma and is marked by an increase in peralkalinity from 0.9 to 1.5 and a decrease in oxygen isotopes ratio from 7.0 to 5.0 ‰. We interpret these observations as the consequence of maturation of the shallow magma reservoir towards less sediment contamination. Such assimilation of sediments is limited thermally, and compositionally because the system should remain alumina deficient. Crustal assimilation in Gran Canaria did not produce voluminous silicic melts by itself but allowed the deviation of the differentiation trend of a more primitive, initially SiO<sub>2</sub>-undersaturated magma. The tightrope of differentiation is represented by the thermal divide between the granite and phonolite minima (i.e. feldspar join in petrogeny’s residua system). Contamination by sediments produces a transient SiO<sub>2</sub>-oversaturated system (Mogan Group). Cogenetic assimilation of cumulates by thermal rejuvenation of the reservoir attracts the magma towards the thermal divide (ubiquitous during the peralkaline stage). Armouring against sediment assimilation through time relaxes the system back to the initial SiO<sub>2</sub>-undersaturated conditions (Fataga Group).</p>



Author(s):  
Carlos Rangel-Romero ◽  
Juan Carlos Rojas-Garnica ◽  
Guillermo Flores-Martínez ◽  
Antonio Barcelata-Pinzón

This paper presents the development of individual contributions, in the generation of irreversibilities, of a refrigeration system based on the Coefficient of Operation (COP). The generation of irreversibilities has been widely analyzed using the principles of the first and second laws of thermodynamics. This analysis uses the parameters of enthalpy, entropy as well as the temperature and heat generated in each component. The method proposed in this work improves the accuracy of the calculations due to the use of the COP in the mathematical process, which includes the processes of heat transfer and pressure drops developed in the evaporator, suction line, compressor, discharge line, condenser, liquid line and expansion valve of the mechanical vapor compression refrigeration system. The mathematical analyzes and the experimental results are shown, with these it is concluded that the exposed procedure is closer to the real conditions than those traditional procedures found in the text books.



2019 ◽  
Vol 38 (1) ◽  
pp. 253-273 ◽  
Author(s):  
Meng Fanxi ◽  
Quan Zhang ◽  
Sheng Du ◽  
Chang Yue ◽  
Xiaowei Ma

A novel loop heat pipe used for data center with a liquid line wick is designed, and its one-dimensional steady-state mathematical model is developed based on the energy and thermodynamic equilibrium of each component and the simulation results were validated by comparing with the experimental data in this work. The compensation chamber of the loop heat pipe was removed, and a section of capillary wick was added in the end of liquid line in order to reduce heat leakage and vapor backflow and increase working medium circulation power. The mathematical model of the novel loop heat pipe can be used to predict the operating temperature of each characteristic point with small relative errors of <13%. A parametric study of the steady-state performance characteristics including the effects of material, diameter, length, and porosity of liquid line wick are conducted, which provides a powerful basis for the design of novel loop heat pipe experiment.



2019 ◽  
Vol 60 (10) ◽  
pp. 1853-1880 ◽  
Author(s):  
Troels F D Nielsen ◽  
C Kent Brooks ◽  
Jakob K Keiding

Abstract Preferred and modelled bulk composition of the Skaergaard intrusion are compared to coeval basaltic compositions in East Greenland and found to relate to the second evolved cycle of Geikie Plateau Formation lavas and coeval Skaergaard-like dikes in major and trace element (Mg# ∼45, Ce/Nb ∼2·5, (Dy/Yb)N ∼1·35), and precious metal composition (Pd/Pt ∼3, Au/Pt ∼2) as well as in age (∼56 Ma). Successful comparisons of precious metal compositions only occur with Skaergaard models based on mass balance. The bulk liquid of the intrusion evolved along the liquid line of descent to immiscibility between Si- and Fe-rich silicate liquids after ∼90% of crystallization (F = ∼0·10) in agreement with experimental constraints. Immiscibility led to accumulation and fractionation of the Fe-rich silicate melt in the mushy floor of the intrusion and continued accumulation of granophyre component in the remaining bulk liquid. The composition of plagioclase in the precious metal mineralized gabbro and modelling of Pd/Pt and Au/Pt in first formed droplets of sulphide melt suggest that sulphide saturation was reached in interstitial melts in crystal mushes in the floor and roof and in bulk liquid with a composition equivalent to that of the bulk liquid at lower UZa times and after crystallization of 82–85% of the bulk liquid (F = 0·19–0·16). Prior to sulphide saturation in UZa type melt, the precious metals ratios of the bulk liquid were controlled by the loss of Pt relative to Pd and Au in agreement with the low empirical and experimental solubility of Pt of ∼9ppb compared to a much higher value for Pd and Au. The relative timing between sulphide saturation (F = ∼0·18) and immiscibility between silicate melts (F = ∼0·10) and modelled precious metal ratios underpin the proposed multi-stage model for the mineralization, advocating initial accumulation in the mushy floor of the magma chamber controlled by sulphide saturation in mush melts rather than bulk melt, followed by redistribution of precious metals in a macro-rhythmic succession of gabbroic layers of the upward migrating crystallization zone.



Sign in / Sign up

Export Citation Format

Share Document