Estimation of Seismic Landslide Hazard in the Eastern Himalayan Syntaxis Region of Tibetan Plateau

2017 ◽  
Vol 91 (2) ◽  
pp. 658-668 ◽  
Author(s):  
Guoliang DU ◽  
Yongshuang ZHANG ◽  
Zhihua YANG ◽  
Javed IQBAL ◽  
Bin TONG ◽  
...  
2017 ◽  
Author(s):  
Maarten Lupker ◽  
Jérôme Lavé ◽  
Christian France-Lanord ◽  
Marcus Christl ◽  
Didier Bourlès ◽  
...  

Abstract. The Tsangpo-Brahmaputra River drains the eastern part of the Himalayan range, flowing from the Tibetan Plateau through the eastern Himalayan syntaxis and downstream to the Indo-Gangetic floodplain. As such it is a unique natural laboratory to study how denudation and sediment production processes are transferred to river detrital signals. In this study, we present a new 10Be data set to constrain denudation rates across the catchment and to quantify the impact of rapid erosion within the syntaxis region on cosmogenic nuclide budgets and signals. 10Be denudation rates span around two orders of magnitude across the catchments (ranging from 0.03 mm/yr to > 4 mm/yr) and sharply increase as the Tsangpo-Brahmaputra flows across the eastern Himalaya. The increase in denudation rates however occurs ~ 150 km downstream of the Namche Barwa-Gyala Peri massif (NBGPm), an area which has been previously characterized by extremely high erosion and exhumation rates. We suggest that this downstream lag is mainly due to the physical abrasion of coarse grained, low 10Be concentration, landslide material produced within the syntaxis that dilutes the upstream high concentration 10Be flux from the Tibetan Plateau only after abrasion has transferred sediment to the studied sand fraction. A simple abrasion model produces typical lag distances of 50 to 150 km compatible with our observations. Abrasion effects reduce the spatial resolution over which denudation can be constrained in the eastern Himalayan syntaxis. In addition, we also highlight that denudation rate estimates are dependent on the sediment connectivity, storage and quartz content of the upstream Tibetan Plateau part of the catchment which tends to lead to an overestimation of downstream denudations rates. Taking these effects into account we estimate a denudation rates of ca. 2 to 5 mm/yr for the entire syntaxis and ca. 4 to 28 mm/yr for the NBGPm, which is significantly higher than other to other large catchments. Overall, 10Be concentrations measured at the outlet of the Tsangpo-Brahmaputra in Bangladesh suggest a sediment flux between 780 and 1430 Mt/yr equivalent to a denudation rate between 0.7 and 1.2 mm/yr for the entire catchment.


2012 ◽  
Vol 500 ◽  
pp. 773-779 ◽  
Author(s):  
Shing Tsz Lee ◽  
Teng To Yu ◽  
Wen Fei Peng

The effect of Chi-Chi earthquake on typhoon-triggered landslides was estimated using accuracy curves method in seismic landslide hazard model. The logistic regression model and geographic information system (GIS) are chosen to perform the seismic landslide hazard analysis. An inventory map of the landslides from SPOT images taken before and after the events was used to produce a dependent variable, which takes a value of 0 and 1 for the absence and presence of landslides. A set of independent parameters include lithology, elevation, slope gradient, slope aspect, terrain roughness, land use and Arias intensity (Ia) with topographic effect. Subsequently, the logistic regression is used to find the best fitting function to describe the relationship between occurrence or non-occurrence of landslides within an individual grid cell. The decreased effect of the earthquake was measured using accuracy curves method. It found that the effect of earthquake decreases with time. The landslide events of 2004 had little correlation with the Chi-Chi earthquake. Nevertheless, after period of 5 years, the seismic intensity from the Chi-Chi earthquake might still have affected conditions of landslides in the study area.


2011 ◽  
Vol 122 (1-2) ◽  
pp. 9-21 ◽  
Author(s):  
Edwin L. Harp ◽  
David K. Keefer ◽  
Hiroshi P. Sato ◽  
Hiroshi Yagi

Sign in / Sign up

Export Citation Format

Share Document