Zircon U-Pb age, Trace Element, and Hf Isotopic Compositions of Nordmarkite in the Lizhuang Rare Earth Element Deposit in the Western Margin of the Yangtze Block

2018 ◽  
Vol 92 (1) ◽  
pp. 225-240 ◽  
Author(s):  
Jiayun ZHOU ◽  
Hongqi TAN ◽  
Daxin GONG ◽  
Zhimin ZHU ◽  
Liping LUO
2009 ◽  
Vol 53 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Fuat Yavuz ◽  
Shao-Yong Jiang ◽  
Necati Karakaya ◽  
Muazzez Çelik Karakaya ◽  
Reha Yavuz

2010 ◽  
Vol 84 (3) ◽  
pp. 614-623 ◽  
Author(s):  
Guangzhou MAO ◽  
Renmin HUA ◽  
Jianfeng GAO ◽  
Kuidong ZHAO ◽  
Guangming LONG ◽  
...  

1993 ◽  
Vol 30 (7) ◽  
pp. 1521-1531 ◽  
Author(s):  
David Morin ◽  
Michel Jébrak ◽  
Marc Bardoux ◽  
Normand Goulet

The McWatters metavolcanic rocks are structurally bounded lenses within the Cadillac tectonic zone on the southern boundary of the Abitibi greenstone belt. They comprise komatiite, tholeiitic basalt and gabbro, and calc-alkaline andesitic lavas and volcaniclastic rocks cut by calc-alkaline dioritic and lamprophyric dykes. The McWatters basalts are mid-ocean-ridge basalt type tholeiites exhibiting low incompatible trace element contents and [La/Yb]N < 1. They may have formed via relatively high degree partial melting of a rare-earth element depleted mantle source. The andesites exhibit chondrite-normalized trace-element patterns with light-rare-earth and large-ion lithophile element enrichments and negative Nb and Ti anomalies, comparable to those of subduction-related calc-alkaline andesites. McWatters units are distinct from nearby Blake River Group rocks, despite comparable lithological assemblages and some common geochemical characteristics. The McWatters basalts exhibit lower Ti/Y, Zr/Y, and La/Yb than the Blake River tholeiites, whereas the McWatters andesites display lower Ti/Zr and higher Zr/Y than the Blake River calc-alkaline units. The McWatters tholeiites can be correlated with northern Pontiac Group tholeiitic units based on similar trace-element ratios and parallel rare-earth-element patterns. Thus, the McWatters tholeiites represent Pontiac rocks, underthrust beneath the southern Abitibi belt and appearing as isolated and retrograded lenses in the Cadillac tectonic zone. They may represent the remnants of an ocean basin that once separated the southern Abitibi greenstone belt from the Pontiac Subprovince.


2006 ◽  
Vol 43 (10) ◽  
pp. 1419-1444 ◽  
Author(s):  
Carol D Frost ◽  
B Ronald Frost ◽  
Robert Kirkwood ◽  
Kevin R Chamberlain

The 2.95–2.82 Ga quartzofeldspathic gneisses and granitoids in the Bighorn, western Owl Creek, and northeastern Wind River uplifts in the central Wyoming Province include low-K tonalite–trondhjemite–granodiorite (TTG) and high-K granodiorite–granite (GG) rocks. Both types of granitoids were intruded contemporaneously, although TTGs are more abundant in the older gneisses. The TTG suite consists of calcic to marginally calc-alkalic rocks that straddle the boundaries between metaluminous and peraluminous and between ferroan and magnesian compositions. Rare-earth element (REE) patterns of these rocks may be highly fractionated with low heavy rare-earth element (HREE) contents and modest to absent Eu anomalies but may also be less strongly HREE depleted. These rocks do not represent first-generation continental crust: most have unradiogenic Nd and radiogenic 207Pb/204Pb isotopic compositions that require the incorporation of isotopically evolved sources. The GG suite has compositions that are transitional between Archean TTG and modern, continental margin calc-alkalic rocks. The GG suite is characterized by higher alkali contents relative to CaO than the TTG suite and higher K/Na ratios but exhibits a similar range in REE patterns. The Nd, Sr, and Pb isotopic compositions of the GG suite are slightly less variable but lie within the range of those of the TTG suite. We interpret them as having a source similar to that of the TTG, perhaps forming by partial melting of preexisting TTG. The shift from TTG-dominated to GG-dominated continental crust was a gradual transition that took place over several hundred million years. Clearly subduction-related calc-alkalic magmatism is not recognized in the Wyoming Province prior to 2.67 Ga.


Sign in / Sign up

Export Citation Format

Share Document