abitibi greenstone belt
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 31)

H-INDEX

40
(FIVE YEARS 2)

2021 ◽  
Author(s):  
D. Yergeau ◽  
P. Mercier-Langevin ◽  
B. Dubé ◽  
V. McNicoll ◽  
S. E. Jackson ◽  
...  

Abstract The Westwood deposit, located in the Archean Doyon-Bousquet-LaRonde mining camp in the southern Archean Abitibi greenstone belt, contains 4.5 Moz (140 metric t) of gold. The deposit is hosted in the 2699–2695 Ma submarine, tholeiitic to calc-alkaline volcanic, volcaniclastic, and intrusive rocks of the Bousquet Formation. The deposit is located near the synvolcanic (ca. 2699–2696 Ma) Mooshla Intrusive Complex that hosts the Doyon epizonal intrusion-related Au ± Cu deposit, whereas several Au-rich volcanogenic massive sulfide (VMS) deposits are present east of the Westwood deposit. The Westwood deposit consists of stratigraphically stacked, contrasting, and overprinting mineralization styles that share analogies with both the intrusion-related and VMS deposits of the camp. The ore zones form three distinct, slightly discordant to stratabound corridors that are, from north (base) to south (top), the Zone 2 Extension, the North Corridor, and the Westwood Corridor. Syn- to late-main regional deformation and upper greenschist to lower amphibolite facies regional metamorphism affect the ore zones, alteration assemblages, and host rocks. The Zone 2 Extension consists of Au ± Cu sulfide (pyrite-chalcopyrite)-quartz veins and zones of disseminated to semimassive sulfides. The ore zones are spatially associated with a series of calc-alkaline felsic sills and dikes that crosscut the mafic to intermediate, tholeiitic to transitional, lower Bousquet Formation volcanic rocks. The metamorphosed proximal alteration consists of muscovite-quartz-pyrite ± gypsum-andalusite-kyanite-pyrophyllite argillic to advanced argillic-style tabular envelope that is up to a few tens of meters thick. The North Corridor consists of auriferous semimassive to massive sulfide veins, zones of sulfide stringers, and disseminated sulfides that are hosted in intermediate volcaniclastic rocks at the base of the upper Bousquet Formation. The Westwood Corridor consists of semimassive to massive sulfide lenses, veins, zones of sulfide stringers, and disseminated sulfides that are located higher in the stratigraphic sequence, at or near the contact between calc-alkaline dacite domes and overlying calc-alkaline rhyodacite of the upper Bousquet Formation. A large, semiconformable distal alteration zone that encompasses the North Corridor is present in the footwall and vicinity of the Westwood Corridor. This metamorphosed alteration zone consists of an assemblage of biotite-Mn garnet-chlorite-carbonate ± muscovite-albite. A proximal muscovite-quartz-chlorite-pyrite argillic-style alteration assemblage is associated with both corridors. The Zone 2 Extension ore zones and associated alteration are considered synvolcanic based on crosscutting relationships and U-Pb geochronology and are interpreted as being the distal expression of an epizonal magmatic-hydrothermal system that is centered on the upper part of the synvolcanic Mooshla Intrusive Complex. The North and Westwood corridors consist of bimodal-felsic Au-rich VMS-type mineralization and alteration produced by the convective circulation of modified seawater that included a magmatic contribution from the coeval epizonal Zone 2 Extension magmatic-hydrothermal system. The Westwood Au deposit represents one of the very few documented examples of an Archean magmatic-hydrothermal system—or at least of such systems formed in a subaqueous environment. The study of the Westwood deposit resulted in a better understanding of the critical role of magmatic fluid input toward the formation of Archean epizonal intrusion-related Au ± Cu and seafloor/subseafloor Au-rich VMS-type mineralization.


2021 ◽  
Author(s):  
D. Yergeau ◽  
P. Mercier-Langevin ◽  
B. Dubé ◽  
M. Malo ◽  
A. Savoie

Abstract The Westwood deposit (4.5 Moz Au) is hosted in the 2699–2695 Ma Bousquet Formation volcanic and intrusive rocks, in the eastern part of the Blake River Group, southern Abitibi greenstone belt. The Bousquet Formation is divided in two geochemically distinct members: a mafic to intermediate, tholeiitic to transitional lower member and an intermediate to felsic, transitional to calc-alkaline upper member. The Bousquet Formation is cut by the synvolcanic (2699–2696 Ma) polyphase Mooshla Intrusive Complex, which is cogenetic with the Bousquet Formation. The deposit contains three strongly deformed (D2 flattening and stretching), steeply S-dipping mineralized corridors that are stacked from north to south: Zone 2 Extension, North Corridor, and Westwood Corridor. The North and Westwood corridors are composed of Au-rich polymetallic sulfide veins and stratabound to stratiform disseminated to massive sulfide ore zones that are spatially and genetically associated with the calcalkaline, intermediate to felsic volcanic rocks of the upper Bousquet Formation. The formation of the disseminated to semimassive ore zones is interpreted as strongly controlled by the replacement of porous volcaniclastic rocks at the contact with more impermeable massive cap rocks that helped confine the upflow of mineralizing fluids. The massive sulfide lenses are spatially associated with dacitic to rhyolitic domes and are interpreted as being formed, at least in part, on the paleoseafloor. The epizonal, sulfide-quartz vein-type ore zones of the Zone 2 Extension are associated with the injection of subvolcanic, calc-alkaline felsic sills and dikes within the lower Bousquet Formation. These subvolcanic intrusive rocks, previously interpreted as lava flows, are cogenetic and coeval with the intermediate to felsic lava flows and domes of the upper Bousquet Formation. The change from fractional crystallization to assimilation- and fractional crystallization-dominated processes and transitional to calc-alkaline magmatism is interpreted to be responsible for the development of the auriferous ore-forming system. The Westwood deposit is similar to some Phanerozoic Au ± base metal-rich magmatic-hydrothermal systems, both in terms of local volcano-plutonic architecture and inferred petrogenetic context. The complex volcanic evolution of the host sequence at Westwood, combined with its proximity to a polyphase synvolcanic intrusive complex, led to the development of one of the few known large Archean subaqueous Au-rich magmatic-hydrothermal systems.


Author(s):  
Marie A. Kieffer ◽  
Lucie Mathieu ◽  
Pierre Bedeaux ◽  
Damien Gaboury ◽  
Michael A. Hamilton

Magmatism during the maturation phase of Archean greenstone belts produced voluminous tonalite-trondhjemite-granodiorite (TTG) suites, as well as a lesser amount of tonalite-trondhjemite-diorite (TTD) suites. Such TTD suites have recently been recognized in the Archean Abitibi greenstone belt, on the southern flank of the Superior Craton, Canada, but their source(s), differentiation processes and depths of emplacement remain poorly constrained. The Neoarchean Eau Jaune Complex (EJC) lies in the northeastern corner of the Abitibi greenstone belt and represents one of the most voluminous tonalite-dominated and diorite-bearing intrusive suites of the Chibougamau region. This TTD suite comprises six intrusive phases with distinct petrology and chemistry. All units were emplaced as laccolith-like intrusions injected along discontinuities within the volcanic succession at ca. 2724 Ma (U-Pb zircon dating), during the synvolcanic interval (i.e., construction and maturation phase), at a depth of approximately 7–8 km. The most HREE-depleted phases (granodiorite, tonalite and trondhjemite) correspond to magmas that fractionated amphibole and were likely produced by partial melting of a garnet- and titanate-bearing amphibolite, akin to TTG magmas. The least HREE-depleted phases are dioritic in composition and correspond to mantle-derived magmas that may have interacted with TTG melts. This indicates interaction between coeval mantle-derived and crustal melts during the maturation phase of the Abitibi greenstone belt. Models formulated to address the geodynamic evolution of greenstone belts must account for the coeval production of basalt-derived (TTG suites) and mantle-derived (tholeiitic magmatism) melts occasionally interacting to form TTD suites.


2021 ◽  
Author(s):  
Mostafa Naghizadeh ◽  
Richard Stuart Smith ◽  
Ross Sherlock ◽  
Kate Rubingh ◽  
Bruno Lafrance ◽  
...  

2021 ◽  
pp. 104221
Author(s):  
Györgyi Tuba ◽  
Daniel J. Kontak ◽  
Brandon G. Choquette ◽  
Jérémie Pfister ◽  
Evan C.G. Hastie ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-61
Author(s):  
Chris Mancuso ◽  
Mostafa Naghizadeh

In hard rock settings, reflection seismic surveys are often acquired on crooked roadways. Acquisition geometry-related noise resulting from these crooked profiles obscures the final image in places where there are crossline dipping reflectors. This noise can be prevented with Cross Dip Moveout (CDMO) corrections. The conventional practice is to apply corrections on straight processing lines, however, this aggravates reflection duplication and stretching artifacts. We propose an efficient method for CDMO correction that operates on any Common Midpoint binning geometry. This method suppresses reflection duplication in high-fold Common Midpoint bins. The strike and dip of reflectors are decomposed into two horizontal, orthogonal components and inputted into a 3D travel time equation. Using a synthetic model, a processing workflow was developed to locally apply these Generalized CDMO corrections. This workflow was then applied to a seismic profile acquired over the Larder-Lake Cadillac Deformation Zone in the Abitibi Greenstone Belt, Canada. The final processed seismic image showed an increased coherency of reflections rendering them more compatible with the known surface geology of the study area.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 261
Author(s):  
Lucie Mathieu

In gold-endowed greenstone belts, ore bodies generally correspond to orogenic gold systems (OGS) formed during the main deformation stage that led to craton stabilization (syntectonic period). Most OGS deposits postdate and locally overprint magmatic-hydrothermal systems, such as Au-Cu porphyry that mostly formed during the main magmatic stage (synvolcanic period) and polymetallic intrusion-related gold systems (IRGS) of the syntectonic period. Porphyries are associated with tonalite-dominated and sanukitoid plutons, whereas most IRGS are related to alkaline magmatism. As reviewed here, most intrusion-associated mineralization in the Abitibi greenstone belt is the result of complex and local multistage metallogenic processes. A new classification is proposed that includes (1) OGS and OGS-like deposits dominated by metamorphic and magmatic fluids, respectively; (2) porphyry and IRGS that may contain gold remobilized during subsequent deformation episodes; (3) porphyry and IRGS that are overprinted by OGS. Both OGS and OGS-like deposits are associated with crustal-scale faults and display similar gold-deposition mechanisms. The main difference is that magmatic fluid input may increase the oxidation state and CO2 content of the mineralizing fluid for OGS-like deposits, while OGS are characterized by the circulation of reduced metamorphic fluids. For porphyry and IRGS, mineralizing fluids and metals have a magmatic origin. Porphyries are defined as base metal and gold-bearing deposits associated with large-volume intrusions, while IRGS are gold deposits that may display a polymetallic signature and that can be associated with small-volume syntectonic intrusions. Some porphyry, such as the Côté Gold deposit, demonstrate that magmatic systems can generate economically significant gold mineralization. In addition, many deposits display evidence of multistage processes and correspond to gold-bearing or gold-barren magmatic-hydrothermal systems overprinted by OGS or by gold-barren metamorphic fluids. In most cases, the source of gold remains debated. Whether magmatic activity was essential or marginal for fertilizing the upper crust during the Neoarchean remains a major topic for future research, and petrogenetic investigations may be paramount for distinguishing gold-endowed from barren greenstone belts.


Author(s):  
John D. Greenough ◽  
Alejandro Velasquez ◽  
Mohamed Shaheen ◽  
Joel Gagnon ◽  
Brian J. Fryer ◽  
...  

Trace elements in native gold provide a “fingerprint” that tends to be unique to individual gold deposits. Fingerprinting can distinguish gold sources and potentially yield insights into geochemical processes operating during gold deposit formation. Native gold grains come from three historical gold ore deposits; Hollinger, McIntyre (quartz-vein ore), and Aunor near Timmins, Ontario, at the western end of the Porcupine gold camp and the south-western part of the Abitibi greenstone belt. Laser-ablation, inductively-coupled plasma mass spectrometry (LA ICP MS) trace element concentrations were determined on 20 to 25 µm wide, 300 µm long rastor trails in ~ 60 native gold grains. Analyses used Ag as an internal standard with Ag and Au determined by a scanning electron microscope with an energy dispersive spectrometer. The London Bullion Market AuRM2 reference material served as the external standard for 21 trace element analytes (Al, As, Bi, Ca, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Pd, Pt, Rh, Sb, Se, Si, Sn, Te, Ti, Zn; Se generally below detection in samples). Trace elements in native gold associate according to Goldschmidt’s classification of elements strongly suggesting that element behavior in native Au is not random. Such element behavior suggests that samples from each Timmins deposit formed under similar but slightly variable geochemical conditions. Chalcophile and siderophile elements provide the most compelling fingerprints of the three ore deposits and appear to be mostly in solid solution in Au. Lithophile elements are not very useful for distinguishing these deposits and element ABSTRACT CUT OFF BY SOFTWARE


2021 ◽  
Author(s):  
Rasmus Haugaard ◽  
Fabiano Della Justina ◽  
Eric Roots ◽  
Saeid Cheraghi ◽  
Rajesh Vayavur ◽  
...  

Abstract Gold in the Abitibi greenstone belt in the Superior craton, the most prolific gold-producing greenstone terrane in the world, comes largely from complex orogenic mineralizing systems related to deep crustal deformation zones. In order to get a better understanding of these systems, we therefore combined new magnetic, gravity, seismic, and magnetotelluric data with stratigraphic and structural observations along a transect in the Matheson area of the Abitibi greenstone belt to constrain large-scale geologic models of the Archean crust. A high-resolution seismic transect reveals that the well-known Porcupine Destor fault dips shallowly to the south, whereas the Pipestone fault dips steeply to the north. Facing directions and gravity models indicate that these faults are thrust faults where older mafic volcanic rocks overlie a younger sedimentary basin. The depth of the basin reaches ~2 to 2.5 km between these two faults, where it is interpreted to overlie mafic-dominated volcanic substrata. Regional seismic and magnetotelluric surveys image the full crust down to 36-km depth to reveal a heterogeneous architecture. Three crustal-scale layers include a resistive (104–105 Ωm) upper crust of granite-greenstone rocks, a low-resistivity (~10–50 Ωm) middle crust dominated by granitic plutons for which low resistivity is attributed to the presence of graphite, and a low to moderately resistive (50–1,000 Ωm) and seismically homogeneous lower crust interpreted as granulite gneisses. The significant resistivity transition between upper and middle crust is interpreted to be the result of interconnected micrographite grain coating, precipitated from carbon-bearing crustal fluids emplaced during Neoarchean craton stabilization. A major subvertical, seismically transparent, and extremely low resistive (<10 Ωm) corridor connects the lower and middle crust with the upper crust. The geometry of this low-resistivity feature supports its interpretation as a deep-rooted extensional fault system where the corridor acted as a regional-scale conduit for gold-bearing hydrothermal fluids from a ductile source region in the lower crust to the depositional site in the brittle upper crust. We propose that this newly discovered whole crustal corridor focused the hydrothermal fluids into the Porcupine Destor fault in the Matheson region.


2021 ◽  
Author(s):  
P Mercier-Langevin ◽  
R A Creaser ◽  
B Dubé ◽  
J Dubé ◽  
D J Kontak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document