heavy rare earth element
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 27)

H-INDEX

12
(FIVE YEARS 4)

Author(s):  
Guibin Zhang ◽  
Jiaxing Wang ◽  
A. Alexander G. Webb ◽  
Lifei Zhang ◽  
Shuaiqi Liu ◽  
...  

Eclogites represent the highest pressure conditions yet observed from rocks thrust to the surface in the central Himalaya. A detailed investigation of the protolith nature of these eclogites is needed to better understand pre-Himalayan geological history. Retrogressed eclogites were collected from Thongmön (Dingri County) and Riwu (Dinggye County), central Himalaya, China. We investigated the bulk rock major and trace elements, Sr-Nd isotopes, zircon geochronology, and Hf-O isotopes. These retrogressed eclogites experienced five stages of metamorphic evolution from prograde amphibolite-facies to peak eclogite-facies, and high pressure granulites-facies, granulites-facies then final amphibolite-facies overprinting during exhumation. Geochemically, they are subalkaline basalts with high FeO contents and a tholeiitic affinity; trace elements show similarities with enriched mid-ocean ridge basalts. Bulk rocks have a wide range of εNd(t) values from −0.24 to +7.08, and an unusually wide range of initial 87Sr/86Sr ratios of 0.705961−0.821182. Zircon relict magmatic cores from both Thongmön and Riwu eclogites yield a consistent protolith age of ca. 1850 Ma, with enriched heavy rare earth element patterns and significant negative Eu anomalies. These relict cores have oxygen isotopes signatures of δ18O = 5.8−8.1‰, εHf(t) values of −4.85 to +9.59, and two-stage model ages (TDM2) of 1.91−2.81 Ga. Metamorphic overgrowth zircons yield much younger ages of ca. 14 Ma. Integration of all of the above data suggests that the protolith of these central Himalayan retrogressed eclogites might be Proterozoic continental flood basalts of the North Indian Plate, generated under a post-collisional extension setting during the assembly of the Columbia Supercontinent. Occurrence of both Neoproterozoic−early Paleozoic rocks and ca. 1.85 Ga rocks in the regional crystalline rocks may reflect either unrecognized sub-horizontal Main Central Thrust exposure(s) or exhumation of a deeply cut part of the Greater Himalayan Crystalline complex. In combination with previous reports of Late Cretaceous, Neoproterozoic, and similar but younger Paleoproterozoic protolith, it is clear that the central Himalayan eclogites originate from multiple sources of protolith.


Geology ◽  
2021 ◽  
Author(s):  
Dominik Gudelius ◽  
Sonja Aulbach ◽  
Hans-Michael Seitz ◽  
Roberto Braga

Metasomatized mantle wedge peridotites exhumed within high-pressure terranes of continental collision zones provide unique insights into crust-mantle interaction and attendant mass transfer, which are critical to our understanding of terrestrial element cycles. Such peridotites occur in high-grade gneisses of the Ulten Zone in the European Alps and record metasomatism by crustal fluids at 330 Ma and high-pressure conditions (2.0 GPa, 850 °C) that caused a transition from coarse-grained, garnet-bearing to fine-grained, amphibole-rich rocks. We explored the effects of crustal fluids on canonically robust Lu-Hf peridotite isotope signatures in comparison with fluid-sensitive trace elements and Nd-Li isotopes. Notably, we found that a Lu-Hf pseudo-isochron is created by a decrease in bulk-rock 176Lu/177Hf from coarse- to fine-grained peridotite that is demonstrably caused by heavy rare earth element (HREE) loss during fluid-assisted, garnet-consuming, amphibole-forming reactions accompanied by enrichment in fluid-mobile elements and the addition of unradiogenic Nd. Despite close spatial relationships, some peridotite lenses record more intense fluid activity that causes complete garnet breakdown and high field strength element (HFSE) addition along with the addition of crust-derived unradiogenic Hf, as well as distinct chromatographic light REE (LREE) fractionation. We suggest that the observed geochemical and isotopic provinciality between peridotite lenses reflects different positions relative to the crustal fluid source at depth. This interpretation is supported by Li isotopes: inferred proximal peridotites show light δ7Li due to strong kinetic Li isotope fractionation (–4.7–2.0‰) that accompanies Li enrichment, whereas distal peridotites show Li contents and δ7Li similar to those of the depleted mantle (1.0–7.2‰). Thus, Earth’s mantle can acquire significant Hf-Nd-Li-isotopic heterogeneity during locally variable ingress of crustal fluids in continental subduction zones.


Geology ◽  
2021 ◽  
Author(s):  
R. Tamblyn ◽  
D. Hasterok ◽  
M. Hand ◽  
M. Gard

Igneous and metamorphic rocks contain the mineralogical and geochemical record of thermally driven processes on Earth. The generally accepted thermal budget of the mantle indicates a steady cooling trend since the Archean. The geological record, however, indicates this simple cooling model may not hold true. Subduction-related eclogites substantially emerge in the rock record from 2.1 Ga to 1.8 Ga, indicating that average mantle thermal conditions cooled below a critical threshold for widespread eclogite preservation. Following this period, eclogite disappeared again until ca. 1.1 Ga. Coincident with the transient emergence of eclogite, global granite chemistry recorded a decrease in Sr and Eu and increases in yttrium and heavy rare earth element (HREE) concentrations. These changes are most simply explained by warming of the thermal regime associated with granite genesis. We suggest that warming was caused by increased continental insulation of the mantle at this time. Ultimately, secular cooling of the mantle overcame insulation, allowing the second emergence and preservation of eclogite from ca. 1.1 Ga until present.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 916
Author(s):  
Adrienne Brotodewo ◽  
Caroline Tiddy ◽  
Diana Zivak ◽  
Adrian Fabris ◽  
David Giles ◽  
...  

Detrital zircon grains preserved within clasts and the matrix of a basal diamictite sequence directly overlying the Carrapateena IOCG deposit in the Gawler Craton, South Australia are shown here to preserve U–Pb ages and geochemical signatures that can be related to underlying mineralisation. The zircon geochemical signature is characterised by elevated heavy rare-earth element fractionation values (GdN/YbN ≥ 0.15) and high Eu ratios (Eu/Eu* ≥ 0.6). This geochemical signature has previously been recognised within zircon derived from within the Carrapateena orebody and can be used to distinguish zircon associated with IOCG mineralisation from background zircon preserved within stratigraphically equivalent regionally unaltered and altered samples. The results demonstrate that zircon chemistry is preserved through processes of weathering, erosion, transport, and incorporation into cover sequence materials and, therefore, may be dispersed within the cover sequence, effectively increasing the geochemical footprint of the IOCG mineralisation. The zircon geochemical criteria have potential to be applied to whole-rock geochemical data for the cover sequence diamictite in the Carrapateena area; however, this requires understanding of the presence of minerals that may influence the HREE fractionation (GdN/YbN) and/or Eu/Eu* results (e.g., xenotime, feldspar).


2021 ◽  
Vol 176 (7) ◽  
Author(s):  
Shujuan Jiao ◽  
Noreen J. Evans ◽  
Ross N. Mitchell ◽  
Ian C. W. Fitzsimons ◽  
Jinghui Guo

2021 ◽  
pp. jgs2020-224
Author(s):  
Bei Zhu ◽  
Zhaojie Guo ◽  
Shaonan Zhang ◽  
Ning Ye ◽  
Ziye Lu ◽  
...  

The latest studies proved contribution of the Emeishan mantle plume (the widely-regarded origin of the Emeishan LIP in the western Yangtze Plate. LIP: large igneous province) to the Palaeo-Tethys subduction. However, whether the Palaeo-Tethys subduction oppositely affected the formation of the Emeishan LIP remains poorly understood. Here, we report geochronological, petrological, geochemical and isotopic studies of a gabbroic intrusion in this LIP, located in Jiangwei, the Dali area. The gabbro has a weighted mean SHRIMP U-Pb age of ∼262 Ma. Key geochemical features include Nb, Ta and Ti depletion; Th, U and Sr enrichment, low light/heavy rare earth element ratios and ∼0.707 87Sr/86Sr(t) and ∼-0.21 εNd(t) values. We conducted pMELTS thermodynamic modeling and batch melting calculations to evaluate the origin and evolution of the gabbro, based on real components of low-Ti picrites and xenolith of the Yangtze lithosphere. The results support 3% melting of a hydrated spinel peridotite source from the Yangtze lithosphere can produce magma equivalent to the gabbro components. Integrating this conclusion with tectonic background of the western Yangtze Plate and volcano-stratigraphic record of the Emeishan LIP, we infer the early-stage magmatism of the Emeishan LIP was triggered by Paleo-Tethys back-arc extension with fluid modification from subductional slab.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5433267


Clay Minerals ◽  
2021 ◽  
pp. 1-15
Author(s):  
Victor Matheus Joaquim Salgado-Campos ◽  
Luiz Carlos Bertolino ◽  
Francisco José da Silva ◽  
Julio Cezar Mendes ◽  
Reiner Neumann

Abstract Halloysite is a 1:1 dioctahedral clay mineral that has been studied widely for applications in nanotechnology and as a mineral exploration guide for recognizing regolith-hosted heavy rare earth element (HREE) deposits. In Brazil, pegmatites from the state of Rio de Janeiro have been catalogued, but their potential to host halloysite deposits has never been studied. After a mineral exploration programme, one pegmatite with considerable halloysite contents and economic potential was discovered. This study reports the mineralogical and chemical characterization of the halloysite of this pegmatite and evaluates the possibility of clay-adsorbed HREE deposits, like that in the Zudong (China) regolith-hosted HREE deposit. Seven samples were collected in horizontal channels. Bulk samples and clay fractions (<2 μm) were analysed by quantitative mineral analysis (X-ray diffraction/Rietveld method), chemical analysis (major elements by X-ray fluorescence and Y, U, Th and rare earth elements by inductively coupled plasma mass spectrometry), scanning electron microscopy, Fourier-transform infrared spectroscopy, particle-size analysis, nitrogen physisorption and cation-exchange capacity. Mixed polygonal/cylindrical halloysite-7Å in concentrations between 6.3 and 35.4 wt.% in bulk samples and between 58.0 and 89.8 wt.% in the clay fractions were identified in the pegmatite. The clay fractions presented an average chemical composition of 45.46 wt.% SiO2, 36.10 wt.% Al2O3, 14.62 wt.% loss on ignition and 1.04 wt.% Fe2O3, as well as technological properties close to those observed in world-class halloysite deposits such as Dragon Mine (USA) and Matauri Bay (New Zealand). The clay minerals did not present significant HREE contents.


Geology ◽  
2020 ◽  
Author(s):  
S. Brandt ◽  
M.L. Fassbender ◽  
R. Klemd ◽  
C. Macauley ◽  
P. Felfer ◽  
...  

Olivine is one of the most important minerals used to reconstruct magmatic processes, yet the rare earth element (REE) systematics of Fe-rich olivine in igneous rocks and ore deposits is poorly understood. As detected by in situ laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) analysis, cumulate fayalite (Fe2SiO4) in the Paleoproterozoic Vergenoeg F-Fe-REE deposit of the Bushveld large igneous province (LIP) in South Africa contains the highest heavy REE (HREE) contents ever recorded for olivine, with HREE enrichment of as much as 6000× chondritic values. Atom probe tomography maps confirm the incorporation of the HREEs into the fayalite crystal lattice, facilitated by lithium acting as a main charge balancer and by high REE contents in the highly fractionated felsic parental melt that is related to the Bushveld LIP. The high HREE concentrations of fayalite in concert with its high modal abundance (&gt;95 vol%) indicate that the fayalite cumulates are the main host for the HREE mineralization of the Vergenoeg deposit. Fayalites of Vergenoeg demonstrate that Fe-rich olivine may fractionate large amounts of HREEs, and we propose fayalite cumulates as potential future targets for HREE exploration.


2020 ◽  
Author(s):  
Sönke Brandt ◽  
et al.

Atom probe tomography 3-D videos, analytical data, and details on analytical procedures<br>


2020 ◽  
Author(s):  
Sönke Brandt ◽  
et al.

Atom probe tomography 3-D videos, analytical data, and details on analytical procedures<br>


Sign in / Sign up

Export Citation Format

Share Document