scholarly journals Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: Lessons from natural assemblages

Author(s):  
Mark K. L. Wong ◽  
Carlos P. Carmona
2019 ◽  
Vol 9 (10) ◽  
pp. 5731-5742
Author(s):  
Huiying Chen ◽  
Yongmei Huang ◽  
Kejian He ◽  
Yu Qi ◽  
Engui Li ◽  
...  

Weed Research ◽  
2015 ◽  
Vol 56 (2) ◽  
pp. 102-113 ◽  
Author(s):  
B Borgy ◽  
R Perronne ◽  
C Kohler ◽  
A-L Grison ◽  
B Amiaud ◽  
...  

2020 ◽  
Author(s):  
Mark K. L. Wong ◽  
Carlos P. Carmona

ABSTRACTFunctional diversity assessments are crucial and increasingly used for understanding ecological processes and managing ecosystems. The functional diversity of a community is assessed by sampling traits at one or more scales (individuals, populations, species) and calculating a summary index of the variation in trait values. However, it remains unclear how the scale at which traits are sampled and the indices used to estimate functional diversity may alter the patterns observed and inferences about ecological processes.For 40 plant and 61 ant communities, we assess functional diversity using six methods – encompassing various mean-based and probabilistic methods – chosen to reflect common scenarios where different levels of detail are available in trait data. We test whether including trait variability at different scales (from individuals to species) alter functional diversity values calculated using volume-based and dissimilarity-based indices, Functional Richness (FRic) and Rao, respectively. We further test whether such effects alter the functional diversity patterns observed across communities and their relationships with environmental drivers such as abiotic gradients and occurrences of invasive species.Intraspecific trait variability strongly determined FRic and Rao. Methods using only species’ mean trait values to calculate FRic (convex hulls) and Rao (Gower-based dissimilarity) distorted the patterns observed when intraspecific trait variability was considered. These distortions generated Type I and Type II errors for the effects of environmental factors structuring the plant and ant communities.The high sensitivity of FRic to individuals with extreme trait values was revealed in comparisons of different probabilistic methods including among-individual and among-population trait variability in functional diversity. By contrast, values and ecological patterns in Rao were consistent among methods including different scales of intraspecific trait variability.Decisions about where traits are sampled and how trait variability is included in functional diversity can drastically change the patterns observed and conclusions about ecological processes. We recommend sampling the traits of multiple individuals per species and capturing their intraspecific trait variability using probabilistic methods. We discuss how intraspecific trait variability can be reasonably estimated and included in functional diversity in the common circumstance where only limited trait data are available.


2010 ◽  
Vol 2 (2) ◽  
pp. 163-174 ◽  
Author(s):  
Francesco de Bello ◽  
Sandra Lavorel ◽  
Cécile H. Albert ◽  
Wilfried Thuiller ◽  
Karl Grigulis ◽  
...  

Flora ◽  
2021 ◽  
Vol 279 ◽  
pp. 151806
Author(s):  
Edilvane Inês Zonta ◽  
Guilherme Krahl de Vargas ◽  
João André Jarenkow

Author(s):  
Javier Puy ◽  
Carlos P Carmona ◽  
Hana Dvořáková ◽  
Vít Latzel ◽  
Francesco de Bello

Abstract Background and Aims The observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant’s epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation. Methods A glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population. Key Results Parental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins. Conclusions A diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.


Ecography ◽  
2011 ◽  
Vol 34 (5) ◽  
pp. 856-863 ◽  
Author(s):  
Jan Lepš ◽  
Francesco de Bello ◽  
Petr Šmilauer ◽  
Jiří Doležal

Author(s):  
Raquel Benavides ◽  
Fernando Valladares ◽  
Christian Wirth ◽  
Sandra Müller ◽  
Michael Scherer-Lorenzen

2017 ◽  
Vol 62 (5) ◽  
pp. 916-928 ◽  
Author(s):  
Aina Garcia-Raventós ◽  
Aida Viza ◽  
José M. Tierno de Figueroa ◽  
Joan L. Riera ◽  
Cesc Múrria

Sign in / Sign up

Export Citation Format

Share Document