scholarly journals Diversity of parental environments increases phenotypic variation in Arabidopsis populations more than genetic diversity but similarly affects productivity

Author(s):  
Javier Puy ◽  
Carlos P Carmona ◽  
Hana Dvořáková ◽  
Vít Latzel ◽  
Francesco de Bello

Abstract Background and Aims The observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant’s epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation. Methods A glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population. Key Results Parental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins. Conclusions A diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.

Author(s):  
Allan Raffard ◽  
Elvire Bestion ◽  
Julien Cote ◽  
Bart Haegeman ◽  
Nicolas Schtickzelle ◽  
...  

2016 ◽  
Vol 371 (1694) ◽  
pp. 20150272 ◽  
Author(s):  
Justin P. Wright ◽  
Gregory M. Ames ◽  
Rachel M. Mitchell

The importance of intraspecific trait variability for community dynamics and ecosystem functioning has been underappreciated. There are theoretical reasons for predicting that species that differ in intraspecific trait variability will also differ in their effects on ecosystem functioning, particularly in variable environments. We discuss whether species with greater trait variability are likely to exhibit greater temporal stability in their population dynamics, and under which conditions this might lead to stability in ecosystem functioning. Resolving this requires us to consider several questions. First, are species with high levels of variation for one trait equally variable in others? In particular, is variability in response and effects traits typically correlated? Second, what is the relative contribution of local adaptation and phenotypic plasticity to trait variability? If local adaptation dominates, then stability in function requires one of two conditions: (i) individuals of appropriate phenotypes present in the environment at high enough frequencies to allow for populations to respond rapidly to the changing environment, and (ii) high levels of dispersal and gene flow. While we currently lack sufficient information on the causes and distribution of variability in functional traits, filling in these key data gaps should increase our ability to predict how changing biodiversity will alter ecosystem functioning.


Flora ◽  
2021 ◽  
Vol 279 ◽  
pp. 151806
Author(s):  
Edilvane Inês Zonta ◽  
Guilherme Krahl de Vargas ◽  
João André Jarenkow

1974 ◽  
Vol 25 (1) ◽  
pp. 21 ◽  
Author(s):  
SM Ali ◽  
WJR Boyd

The pathogenic variability of isolates of R. secalis collected in Western Australia has been examined on different host genera of the Gramineae and on selected barley cultivars. Depending on the host-isolate combination and the conditions of the test, evidence has been obtained of inter- and intra-isolate variability in both host reaction and isolate pathogenicity. This complicates definitive interpretation of the results, militates against identification of conventional 'races' of the pathogen and shows that R. secalis does not exhibit strict host specialization. Hosts which consistently express resistance or susceptibility under different environmental conditions, and isolates which express their pathogenic characteristics consistently, have been identified. The need for more precise genetic studies and adequate sampling of genetic diversity is emphasized.


2019 ◽  
Author(s):  
Jaime Gasca-Pineda ◽  
Yocelyn T. Gutiérrez-Guerrero ◽  
Erika Aguirre-Planter ◽  
Luis E. Eguiarte

AbstractWild maize, commonly known as teosinte, has a wide distribution in central Mexico and inhabits a wide range of environmental conditions. According to previous studies, the environment is a determinant factor for the amount and distribution of genetic diversity. In this study, we used a set of neutral markers to explore the influence of contemporary factors and historical environmental shifts on genetic diversity, including present and three historical periods. Using a set of 22 nuclear microsatellite loci, we genotyped 527 individuals from 29 localities. We found highly variable levels of genetic diversity (Z. m. parviglumis HE= 0.3646–0.7699; Z. m. mexicana HE= 0.5885–0.7671) and significant genetic structure among localities (average DEST= 0.4332). Also, we recovered significant values of heterozygote deficiency (average FIS= 0.1796) and variable levels of selfing (sg2=0.0–0.3090). The Bayesian assignment analysis yielded four genetic clusters dividing the sample into subspecies, that in turn, were separated into two clusters. Environmental conditions played a strong influence in the distribution of genetic diversity, as demographic analysis and changes in species range revealed by modeling analyses were consistent. We conclude that current genetic diversity in teosinte is the result of a mixture of local adaptation and genetic isolation along with historical environmental fluctuations.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1633 ◽  
Author(s):  
Suzanna M. Evans ◽  
Elizabeth A. Sinclair ◽  
Alistair G.B. Poore ◽  
Keryn F. Bain ◽  
Adriana Vergés

Declines in genetic diversity within a species can affect the stability and functioning of populations. The conservation of genetic diversity is thus a priority, especially for threatened or endangered species. The importance of genetic variation, however, is dependent on the degree to which it translates into phenotypic variation for traits that affect individual performance and ecological processes. This is especially important for predominantly clonal species, as no single clone is likely to maximise all aspects of performance. Here we show that intraspecific genotypic diversity as measured using microsatellites is a strong predictor of phenotypic variation in morphological traits and shoot productivity of the threatened, predominantly clonal seagrassPosidonia australis, on the east coast of Australia. Biomass and surface area variation was most strongly predicted by genotypic richness, while variation in leaf chemistry (phenolics and nitrogen) was unrelated to genotypic richness. Genotypic richness did not predict tissue loss to herbivores or epiphyte load, however we did find that increased herbivore damage was positively correlated with allelic richness. Although there was no clear relationship between higher primary productivity and genotypic richness, variation in shoot productivity within a meadow was significantly greater in more genotypically diverse meadows. The proportion of phenotypic variation explained by environmental conditions varied among different genotypes, and there was generally no variation in phenotypic traits among genotypes present in the same meadows. Our results show that genotypic richness as measured through the use of presumably neutral DNA markers does covary with phenotypic variation in functionally relevant traits such as leaf morphology and shoot productivity. The remarkably long lifespan of individualPosidoniaplants suggests that plasticity within genotypes has played an important role in the longevity of the species. However, the strong link between genotypic and phenotypic variation suggests that a range of genotypes is still the best case scenario for adaptation to and recovery from predicted environmental change.


2018 ◽  
Vol 14 (6) ◽  
pp. 20180115 ◽  
Author(s):  
Talisin T. Hammond ◽  
Rupert Palme ◽  
Eileen A. Lacey

Differences in temporal patterns of activity can modulate the ambient conditions to which organisms are exposed, providing an important mechanism for responding to environmental change. Such differences may be particularly relevant to ecological generalists, which are expected to encounter a wider range of environmental conditions. Here, we compare temporal patterns of activity for partially sympatric populations of a generalist (the lodgepole chipmunk, Tamias speciosus ) and a more specialized congener (the alpine chipmunk, Tamias alpinus ) that have displayed divergent responses to the past century of environmental change. Although mean activity budgets were similar between species, analyses of individual-level variation in locomotion revealed that T. alpinus exhibited a narrower range of activity patterns than T . speciosus . Further analyses revealed that T. alpinus was more active earlier in the day, when temperatures were cooler, and that activity patterns for both species changed with increased interspecific co-occurrence. These results are consistent with the greater responsiveness of T. alpinus to changes in environmental conditions. In addition to highlighting the utility of accelerometers for collecting behavioural data, our findings add to a growing body of evidence, suggesting that the greater phenotypic variability displayed by ecological generalists may be critical to in situ responses to environmental change.


2018 ◽  
Vol 16 (5) ◽  
pp. 469-477 ◽  
Author(s):  
Georgios F. Tsanakas ◽  
Photini V. Mylona ◽  
Katerina Koura ◽  
Anthoula Gleridou ◽  
Alexios N. Polidoros

AbstractThe Greek lentil landrace ‘Eglouvis’ is cultivated continuously at the Lefkada island for more than 400 years. It has great taste, high nutritional value and high market price. In the present study, we used morphological and molecular markers to estimate genetic diversity within the landrace. Morphological analysis was based on characteristics of the seed. Molecular analysis was performed using simple sequence repeat (SSR) molecular markers in a high-resolution melting (HRM) approach. ‘Samos’ and ‘Demetra’, two of the most widely cultivated commercial lentil varieties in Greece, were used for comparisons. Morphological analysis was performed with 584 seeds randomly selected from a lot. Analysis of seed dimensions and colour distributed the samples in different categories and highlighted the phenotypic variability in ‘Eglouvis’ lentil seeds. Genetic variability was estimated from 91 individual DNA samples with 11 SSR markers using HRM analysis. Genotyping was based upon the shape of the melting curves and the difference plots; all polymerase chain reaction products were also run on agarose gels. Genetic distances of individuals and principal coordinates analysis suggested that ‘Eglouvis’ landrace has a unique genetic background that significantly differs from ‘Samos’ and ‘Demetra’ and no overlapping could be detected. Genetic variability within the ‘Eglouvis’ landrace can be considered in targeted breeding programs as a significant phytogenetic resource of lentils in Greece.


2020 ◽  
Vol 10 (5) ◽  
pp. 1629-1637 ◽  
Author(s):  
Steven R. Eichten ◽  
Akanksha Srivastava ◽  
Adam J. Reddiex ◽  
Diep R. Ganguly ◽  
Alison Heussler ◽  
...  

Epigenomic changes have been considered a potential missing link underlying phenotypic variation in quantitative traits but is potentially confounded with the underlying DNA sequence variation. Although the concept of epigenetic inheritance has been discussed in depth, there have been few studies attempting to directly dissect the amount of epigenomic variation within inbred natural populations while also accounting for genetic diversity. By using known genetic relationships between Brachypodium lines, multiple sets of nearly identical accession families were selected for phenotypic studies and DNA methylome profiling to investigate the dual role of (epi)genetics under simulated natural seasonal climate conditions. Despite reduced genetic diversity, appreciable phenotypic variation was still observable in the measured traits (height, leaf width and length, tiller count, flowering time, ear count) between as well as within the inbred accessions. However, with reduced genetic diversity there was diminished variation in DNA methylation within families. Mixed-effects linear modeling revealed large genetic differences between families and a minor contribution of DNA methylation variation on phenotypic variation in select traits. Taken together, this analysis suggests a limited but significant contribution of DNA methylation toward heritable phenotypic variation relative to genetic differences.


Sign in / Sign up

Export Citation Format

Share Document