Protamine 1/Protamine 2 mRNA ratio in nonobstructive azoospermic patients

Andrologia ◽  
2021 ◽  
Author(s):  
Sofia Amjad ◽  
Shamim Mushtaq ◽  
Rehana Rehman ◽  
Adnan Munir ◽  
Nida Zahid ◽  
...  
Keyword(s):  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Mohammed M. Laqqan ◽  
Maged M. Yassin

Abstract Background Epigenetics refers to an alteration in gene expression without alteration in the sequence of DNA and this process may be affected by environmental factors and lifestyle like cigarette smoking. This study was designed to evaluate the potential effect of cigarette smoking on the global DNA methylation status and the transcription level of protamine 1 and protamine 2 in human spermatozoa. A total of 188 semen samples were collected from men with a mean age of 34.9 ± 5.8 years old (98 heavy smokers and 90 non-smokers). The DNA and RNA were isolated from purified spermatozoa, then the status of global DNA methylation and the transcription level of protamine 1 and protamine 2 were evaluated using ELISA and qPCR, respectively. The chromatin non-condensation and DNA fragmentation in human spermatozoa were evaluated using chromomycin A3 staining and TUNEL assay, respectively. Results A significant increase has been found in the status of global DNA methylation in spermatozoa of heavy smokers compared to non-smokers (7.69 ± 0.69 ng/μl vs. 4.90 ± 0.40 ng/μl, P < 0.001). Additionally, a significant reduction has been found in transcription level of protamine 1 (25.49 ± 0.31 vs. 23.94 ± 0.40, P < 0.001) and protamine 2 (28.27 ± 0.39 vs. 23.45 ± 0.30, P < 0.001) in heavy smokers. A downregulation has been found in the transcription level of protamine 1 and protamine 2 with a fold change of 0.497 and 0.047, respectively. A significant increase has been shown in the level of DNA fragmentation and chromatin non-condensation in heavy smokers compared to non-smokers (P < 0.001). On the other hand, a significant positive correlation has been found between sperm chromatin non-condensation, sperm DNA fragmentation, transcription level of protamine 1, transcription level of protamine 2, and global DNA methylation status (r = 0.304, P < 0.001; r = 0.399, P < 0.001; r = 0.216, P = 0.003; r = 0.494, P < 0.001, respectively). Conclusion Tobacco cigarette smoking has a potential influence on the global DNA methylation and the transcription level of protamine genes in human spermatozoa, and consequently, affect negatively on the semen parameters.


1987 ◽  
Vol 7 (6) ◽  
pp. 2173-2179
Author(s):  
P C Yelick ◽  
R Balhorn ◽  
P A Johnson ◽  
M Corzett ◽  
J A Mazrimas ◽  
...  

The nuclei of mouse spermatozoa contain two protamine variants, mouse protamine 1 (mP1) and mouse protamine 2 (mP2). The amino acid sequence predicted from mP1 cDNAs demonstrates that mP1 is a 50-amino-acid protein with strong homology to other mammalian P1 protamines. Nucleotide sequence analysis of independently isolated, overlapping cDNA clones indicated that mP2 is initially synthesized as a precursor protein which is subsequently processed into the spermatozoan form of mP2. The existence of the mP2 precursor was confirmed by amino acid composition and sequence analysis of the largest of a set of four basic proteins isolated from late-step spermatids whose synthesis is coincident with that of mP1. The sequence of the first 10 amino acids of this protein, mP2 precursor 1, exactly matches that predicted from the nucleotide sequence of cDNA and genomic mP2 clones. The amino acid composition of isolated mP2 precursor 1 very closely matches that predicted from the mP2 cDNA nucleotide sequence. Sequence analysis of the amino terminus of isolated mature mP2 identified the final processing point within the mP2 precursor. These studies demonstrated that mP2 is synthesized as a precursor containing 106 amino acids which is processed into the mature, 63-amino-acid form found in spermatozoa.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Weijun Jiang ◽  
Hui Sun ◽  
Jing Zhang ◽  
Qing Zhou ◽  
Qiuyue Wu ◽  
...  

2011 ◽  
Vol 18 (8) ◽  
pp. 772-777 ◽  
Author(s):  
Laszlo Nanassy ◽  
Lihua Liu ◽  
Jeanine Griffin ◽  
Douglas T. Carrell

Sign in / Sign up

Export Citation Format

Share Document